Hyperbolic Lattice Boltzmann Method and Discrete Boltzmann Method for Solid–Liquid Phase Change Problem
The lattice Boltzmann method (LBM) is a potential numerical tool for solving challenging fluid problems. The Bhatnagar Gross Krook (BGK) approximation is incorporated in the extensively used LBM-BGK approach. In the hyperbolic lattice Boltzmann method (HLBM), a hyperbolic collision operator is used...
Gespeichert in:
Veröffentlicht in: | Mathematics in computer science 2023-06, Vol.17 (2), Article 9 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Mathematics in computer science |
container_volume | 17 |
creator | Srivastava, Snehil Mariappan, Panchatcharam |
description | The lattice Boltzmann method (LBM) is a potential numerical tool for solving challenging fluid problems. The Bhatnagar Gross Krook (BGK) approximation is incorporated in the extensively used LBM-BGK approach. In the hyperbolic lattice Boltzmann method (HLBM), a hyperbolic collision operator is used for the collision process, whereas the essential objective of multiple relaxation time (MRT) collision operators is to manage the relaxation of different moments independently to boost accuracy and stability. In this paper, to solve the solid–liquid phase change problem, the HLBM and MRT discrete Boltzmann method are coupled with the enthalpy method to observe the phase change phenomenon governed by the heat conduction phenomenon. |
doi_str_mv | 10.1007/s11786-023-00563-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2813626171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2813626171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-f793e6cf3483deddc97edda2884cc5659d83aa8d4527ee6cc7838968834766383</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqVwAVaWWAf8k9jOEspPkYKoBKwt13aoqzRu7VRVWXEHbshJMATBBrGZGcnvvfF8ABxjdIoR4mcRYy5YhgjNECoYzTY7YIAZw5kgotz9mTnaBwcxzhFiBOd4ANx4u7Rh6hunYaW6zmkLL3zTvSxU28I72828gao18NJFHWz3x2vtA3xIAeb99a1yq7UzcDJT0cLRTLXPFk6CnzZ2cQj2atVEe_Tdh-Dp-upxNM6q-5vb0XmV6fS7Lqt5SS3TNc0FNdYYXfJUFREi17pgRWkEVUqYvCDcJqHmgoqSCUFzzhgVdAhO-txl8Ku1jZ2c-3Vo00pJBKaMMMxxUpFepYOPMdhaLoNbqLCVGMlPpLJHKhNS-YVUbpKJ9qaYxOm08Bv9j-sDyXZ7cw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2813626171</pqid></control><display><type>article</type><title>Hyperbolic Lattice Boltzmann Method and Discrete Boltzmann Method for Solid–Liquid Phase Change Problem</title><source>SpringerLink Journals - AutoHoldings</source><creator>Srivastava, Snehil ; Mariappan, Panchatcharam</creator><creatorcontrib>Srivastava, Snehil ; Mariappan, Panchatcharam</creatorcontrib><description>The lattice Boltzmann method (LBM) is a potential numerical tool for solving challenging fluid problems. The Bhatnagar Gross Krook (BGK) approximation is incorporated in the extensively used LBM-BGK approach. In the hyperbolic lattice Boltzmann method (HLBM), a hyperbolic collision operator is used for the collision process, whereas the essential objective of multiple relaxation time (MRT) collision operators is to manage the relaxation of different moments independently to boost accuracy and stability. In this paper, to solve the solid–liquid phase change problem, the HLBM and MRT discrete Boltzmann method are coupled with the enthalpy method to observe the phase change phenomenon governed by the heat conduction phenomenon.</description><identifier>ISSN: 1661-8270</identifier><identifier>EISSN: 1661-8289</identifier><identifier>DOI: 10.1007/s11786-023-00563-w</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Computer Science ; Conduction heating ; Conductive heat transfer ; Enthalpy ; Liquid phases ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Phase change ; Relaxation time</subject><ispartof>Mathematics in computer science, 2023-06, Vol.17 (2), Article 9</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-f793e6cf3483deddc97edda2884cc5659d83aa8d4527ee6cc7838968834766383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11786-023-00563-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11786-023-00563-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Srivastava, Snehil</creatorcontrib><creatorcontrib>Mariappan, Panchatcharam</creatorcontrib><title>Hyperbolic Lattice Boltzmann Method and Discrete Boltzmann Method for Solid–Liquid Phase Change Problem</title><title>Mathematics in computer science</title><addtitle>Math.Comput.Sci</addtitle><description>The lattice Boltzmann method (LBM) is a potential numerical tool for solving challenging fluid problems. The Bhatnagar Gross Krook (BGK) approximation is incorporated in the extensively used LBM-BGK approach. In the hyperbolic lattice Boltzmann method (HLBM), a hyperbolic collision operator is used for the collision process, whereas the essential objective of multiple relaxation time (MRT) collision operators is to manage the relaxation of different moments independently to boost accuracy and stability. In this paper, to solve the solid–liquid phase change problem, the HLBM and MRT discrete Boltzmann method are coupled with the enthalpy method to observe the phase change phenomenon governed by the heat conduction phenomenon.</description><subject>Computer Science</subject><subject>Conduction heating</subject><subject>Conductive heat transfer</subject><subject>Enthalpy</subject><subject>Liquid phases</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Phase change</subject><subject>Relaxation time</subject><issn>1661-8270</issn><issn>1661-8289</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EEqVwAVaWWAf8k9jOEspPkYKoBKwt13aoqzRu7VRVWXEHbshJMATBBrGZGcnvvfF8ABxjdIoR4mcRYy5YhgjNECoYzTY7YIAZw5kgotz9mTnaBwcxzhFiBOd4ANx4u7Rh6hunYaW6zmkLL3zTvSxU28I72828gao18NJFHWz3x2vtA3xIAeb99a1yq7UzcDJT0cLRTLXPFk6CnzZ2cQj2atVEe_Tdh-Dp-upxNM6q-5vb0XmV6fS7Lqt5SS3TNc0FNdYYXfJUFREi17pgRWkEVUqYvCDcJqHmgoqSCUFzzhgVdAhO-txl8Ku1jZ2c-3Vo00pJBKaMMMxxUpFepYOPMdhaLoNbqLCVGMlPpLJHKhNS-YVUbpKJ9qaYxOm08Bv9j-sDyXZ7cw</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Srivastava, Snehil</creator><creator>Mariappan, Panchatcharam</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230601</creationdate><title>Hyperbolic Lattice Boltzmann Method and Discrete Boltzmann Method for Solid–Liquid Phase Change Problem</title><author>Srivastava, Snehil ; Mariappan, Panchatcharam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-f793e6cf3483deddc97edda2884cc5659d83aa8d4527ee6cc7838968834766383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Computer Science</topic><topic>Conduction heating</topic><topic>Conductive heat transfer</topic><topic>Enthalpy</topic><topic>Liquid phases</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Phase change</topic><topic>Relaxation time</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Srivastava, Snehil</creatorcontrib><creatorcontrib>Mariappan, Panchatcharam</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematics in computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Srivastava, Snehil</au><au>Mariappan, Panchatcharam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hyperbolic Lattice Boltzmann Method and Discrete Boltzmann Method for Solid–Liquid Phase Change Problem</atitle><jtitle>Mathematics in computer science</jtitle><stitle>Math.Comput.Sci</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>17</volume><issue>2</issue><artnum>9</artnum><issn>1661-8270</issn><eissn>1661-8289</eissn><abstract>The lattice Boltzmann method (LBM) is a potential numerical tool for solving challenging fluid problems. The Bhatnagar Gross Krook (BGK) approximation is incorporated in the extensively used LBM-BGK approach. In the hyperbolic lattice Boltzmann method (HLBM), a hyperbolic collision operator is used for the collision process, whereas the essential objective of multiple relaxation time (MRT) collision operators is to manage the relaxation of different moments independently to boost accuracy and stability. In this paper, to solve the solid–liquid phase change problem, the HLBM and MRT discrete Boltzmann method are coupled with the enthalpy method to observe the phase change phenomenon governed by the heat conduction phenomenon.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11786-023-00563-w</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1661-8270 |
ispartof | Mathematics in computer science, 2023-06, Vol.17 (2), Article 9 |
issn | 1661-8270 1661-8289 |
language | eng |
recordid | cdi_proquest_journals_2813626171 |
source | SpringerLink Journals - AutoHoldings |
subjects | Computer Science Conduction heating Conductive heat transfer Enthalpy Liquid phases Mathematical analysis Mathematics Mathematics and Statistics Phase change Relaxation time |
title | Hyperbolic Lattice Boltzmann Method and Discrete Boltzmann Method for Solid–Liquid Phase Change Problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T10%3A12%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hyperbolic%20Lattice%20Boltzmann%20Method%20and%20Discrete%20Boltzmann%20Method%20for%20Solid%E2%80%93Liquid%20Phase%20Change%20Problem&rft.jtitle=Mathematics%20in%20computer%20science&rft.au=Srivastava,%20Snehil&rft.date=2023-06-01&rft.volume=17&rft.issue=2&rft.artnum=9&rft.issn=1661-8270&rft.eissn=1661-8289&rft_id=info:doi/10.1007/s11786-023-00563-w&rft_dat=%3Cproquest_cross%3E2813626171%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2813626171&rft_id=info:pmid/&rfr_iscdi=true |