Quadratic Chabauty for modular curves: algorithms and examples

We describe how the quadratic Chabauty method may be applied to determine the set of rational points on modular curves of genus $g>1$ whose Jacobians have Mordell–Weil rank $g$. This extends our previous work on the split Cartan curve of level 13 and allows us to consider modular curves that may...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Compositio mathematica 2023-06, Vol.159 (6), p.1111-1152, Article 1111
Hauptverfasser: Balakrishnan, Jennifer S., Dogra, Netan, Müller, J. Steffen, Tuitman, Jan, Vonk, Jan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1152
container_issue 6
container_start_page 1111
container_title Compositio mathematica
container_volume 159
creator Balakrishnan, Jennifer S.
Dogra, Netan
Müller, J. Steffen
Tuitman, Jan
Vonk, Jan
description We describe how the quadratic Chabauty method may be applied to determine the set of rational points on modular curves of genus $g>1$ whose Jacobians have Mordell–Weil rank $g$. This extends our previous work on the split Cartan curve of level 13 and allows us to consider modular curves that may have few known rational points or non-trivial local height contributions at primes of bad reduction. We illustrate our algorithms with a number of examples where we determine the set of rational points on several modular curves of genus 2 and 3: this includes Atkin–Lehner quotients $X_0^+(N)$ of prime level $N$, the curve $X_{S_4}(13)$, as well as a few other curves relevant to Mazur's Program B. We also compute the set of rational points on the genus 6 non-split Cartan modular curve $X_{\scriptstyle \mathrm { ns}} ^+ (17)$.
doi_str_mv 10.1112/S0010437X23007170
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2813499828</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1112_S0010437X23007170</cupid><sourcerecordid>2813499828</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-1015637027ffd88d4d1d46b0a8deac0113c027ffef518db62d792d77102087543</originalsourceid><addsrcrecordid>eNp1kF1LwzAUhoMoOKc_wLuA19VzkrTJvBBk-AWCiArelTRJt452nUkq27-3c0NF8eJwLt73OR8vIccIp4jIzp4AEASXr4wDSJSwQwaYSkhSJbJdMljLyVrfJwchzACAKaYG5OKx09brWBk6nupCd3FFy9bTprVdrT01nX934ZzqetL6Kk6bQPXcUrfUzaJ24ZDslboO7mjbh-Tl-up5fJvcP9zcjS_vEyNAxQQB04xLYLIsrVJWWLQiK0Ar67QBRG4-NVemqGyRMStHfUkEBkqmgg_JyWbuwrdvnQsxn7Wdn_crc6aQi9Go_6Z34cZlfBuCd2W-8FWj_SpHyNcx5X9i6hn5izFV7PNo59Hrqv4iw5Zc_iD5ltRN4Ss7cd9H_b_vA-eJed4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2813499828</pqid></control><display><type>article</type><title>Quadratic Chabauty for modular curves: algorithms and examples</title><source>Cambridge University Press Journals Complete</source><creator>Balakrishnan, Jennifer S. ; Dogra, Netan ; Müller, J. Steffen ; Tuitman, Jan ; Vonk, Jan</creator><creatorcontrib>Balakrishnan, Jennifer S. ; Dogra, Netan ; Müller, J. Steffen ; Tuitman, Jan ; Vonk, Jan</creatorcontrib><description>We describe how the quadratic Chabauty method may be applied to determine the set of rational points on modular curves of genus $g&gt;1$ whose Jacobians have Mordell–Weil rank $g$. This extends our previous work on the split Cartan curve of level 13 and allows us to consider modular curves that may have few known rational points or non-trivial local height contributions at primes of bad reduction. We illustrate our algorithms with a number of examples where we determine the set of rational points on several modular curves of genus 2 and 3: this includes Atkin–Lehner quotients $X_0^+(N)$ of prime level $N$, the curve $X_{S_4}(13)$, as well as a few other curves relevant to Mazur's Program B. We also compute the set of rational points on the genus 6 non-split Cartan modular curve $X_{\scriptstyle \mathrm { ns}} ^+ (17)$.</description><identifier>ISSN: 0010-437X</identifier><identifier>EISSN: 1570-5846</identifier><identifier>DOI: 10.1112/S0010437X23007170</identifier><language>eng</language><publisher>London, UK: London Mathematical Society</publisher><subject>Algorithms ; Jacobians</subject><ispartof>Compositio mathematica, 2023-06, Vol.159 (6), p.1111-1152, Article 1111</ispartof><rights>2023 The Author(s)</rights><rights>2023 The Author(s). This work is licensed under the Creative Commons Attribution License https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-1015637027ffd88d4d1d46b0a8deac0113c027ffef518db62d792d77102087543</citedby><cites>FETCH-LOGICAL-c408t-1015637027ffd88d4d1d46b0a8deac0113c027ffef518db62d792d77102087543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0010437X23007170/type/journal_article$$EHTML$$P50$$Gcambridge$$Hfree_for_read</linktohtml><link.rule.ids>164,314,776,780,27903,27904,55606</link.rule.ids></links><search><creatorcontrib>Balakrishnan, Jennifer S.</creatorcontrib><creatorcontrib>Dogra, Netan</creatorcontrib><creatorcontrib>Müller, J. Steffen</creatorcontrib><creatorcontrib>Tuitman, Jan</creatorcontrib><creatorcontrib>Vonk, Jan</creatorcontrib><title>Quadratic Chabauty for modular curves: algorithms and examples</title><title>Compositio mathematica</title><addtitle>Compositio Math</addtitle><description>We describe how the quadratic Chabauty method may be applied to determine the set of rational points on modular curves of genus $g&gt;1$ whose Jacobians have Mordell–Weil rank $g$. This extends our previous work on the split Cartan curve of level 13 and allows us to consider modular curves that may have few known rational points or non-trivial local height contributions at primes of bad reduction. We illustrate our algorithms with a number of examples where we determine the set of rational points on several modular curves of genus 2 and 3: this includes Atkin–Lehner quotients $X_0^+(N)$ of prime level $N$, the curve $X_{S_4}(13)$, as well as a few other curves relevant to Mazur's Program B. We also compute the set of rational points on the genus 6 non-split Cartan modular curve $X_{\scriptstyle \mathrm { ns}} ^+ (17)$.</description><subject>Algorithms</subject><subject>Jacobians</subject><issn>0010-437X</issn><issn>1570-5846</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>IKXGN</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kF1LwzAUhoMoOKc_wLuA19VzkrTJvBBk-AWCiArelTRJt452nUkq27-3c0NF8eJwLt73OR8vIccIp4jIzp4AEASXr4wDSJSwQwaYSkhSJbJdMljLyVrfJwchzACAKaYG5OKx09brWBk6nupCd3FFy9bTprVdrT01nX934ZzqetL6Kk6bQPXcUrfUzaJ24ZDslboO7mjbh-Tl-up5fJvcP9zcjS_vEyNAxQQB04xLYLIsrVJWWLQiK0Ar67QBRG4-NVemqGyRMStHfUkEBkqmgg_JyWbuwrdvnQsxn7Wdn_crc6aQi9Go_6Z34cZlfBuCd2W-8FWj_SpHyNcx5X9i6hn5izFV7PNo59Hrqv4iw5Zc_iD5ltRN4Ss7cd9H_b_vA-eJed4</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Balakrishnan, Jennifer S.</creator><creator>Dogra, Netan</creator><creator>Müller, J. Steffen</creator><creator>Tuitman, Jan</creator><creator>Vonk, Jan</creator><general>London Mathematical Society</general><general>Cambridge University Press</general><scope>IKXGN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20230601</creationdate><title>Quadratic Chabauty for modular curves: algorithms and examples</title><author>Balakrishnan, Jennifer S. ; Dogra, Netan ; Müller, J. Steffen ; Tuitman, Jan ; Vonk, Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-1015637027ffd88d4d1d46b0a8deac0113c027ffef518db62d792d77102087543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Jacobians</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Balakrishnan, Jennifer S.</creatorcontrib><creatorcontrib>Dogra, Netan</creatorcontrib><creatorcontrib>Müller, J. Steffen</creatorcontrib><creatorcontrib>Tuitman, Jan</creatorcontrib><creatorcontrib>Vonk, Jan</creatorcontrib><collection>Cambridge Journals Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Compositio mathematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Balakrishnan, Jennifer S.</au><au>Dogra, Netan</au><au>Müller, J. Steffen</au><au>Tuitman, Jan</au><au>Vonk, Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quadratic Chabauty for modular curves: algorithms and examples</atitle><jtitle>Compositio mathematica</jtitle><addtitle>Compositio Math</addtitle><date>2023-06-01</date><risdate>2023</risdate><volume>159</volume><issue>6</issue><spage>1111</spage><epage>1152</epage><pages>1111-1152</pages><artnum>1111</artnum><issn>0010-437X</issn><eissn>1570-5846</eissn><abstract>We describe how the quadratic Chabauty method may be applied to determine the set of rational points on modular curves of genus $g&gt;1$ whose Jacobians have Mordell–Weil rank $g$. This extends our previous work on the split Cartan curve of level 13 and allows us to consider modular curves that may have few known rational points or non-trivial local height contributions at primes of bad reduction. We illustrate our algorithms with a number of examples where we determine the set of rational points on several modular curves of genus 2 and 3: this includes Atkin–Lehner quotients $X_0^+(N)$ of prime level $N$, the curve $X_{S_4}(13)$, as well as a few other curves relevant to Mazur's Program B. We also compute the set of rational points on the genus 6 non-split Cartan modular curve $X_{\scriptstyle \mathrm { ns}} ^+ (17)$.</abstract><cop>London, UK</cop><pub>London Mathematical Society</pub><doi>10.1112/S0010437X23007170</doi><tpages>42</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0010-437X
ispartof Compositio mathematica, 2023-06, Vol.159 (6), p.1111-1152, Article 1111
issn 0010-437X
1570-5846
language eng
recordid cdi_proquest_journals_2813499828
source Cambridge University Press Journals Complete
subjects Algorithms
Jacobians
title Quadratic Chabauty for modular curves: algorithms and examples
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T00%3A20%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quadratic%20Chabauty%20for%20modular%20curves:%20algorithms%20and%20examples&rft.jtitle=Compositio%20mathematica&rft.au=Balakrishnan,%20Jennifer%20S.&rft.date=2023-06-01&rft.volume=159&rft.issue=6&rft.spage=1111&rft.epage=1152&rft.pages=1111-1152&rft.artnum=1111&rft.issn=0010-437X&rft.eissn=1570-5846&rft_id=info:doi/10.1112/S0010437X23007170&rft_dat=%3Cproquest_cross%3E2813499828%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2813499828&rft_id=info:pmid/&rft_cupid=10_1112_S0010437X23007170&rfr_iscdi=true