Quadratic Chabauty for modular curves: algorithms and examples
We describe how the quadratic Chabauty method may be applied to determine the set of rational points on modular curves of genus $g>1$ whose Jacobians have Mordell–Weil rank $g$. This extends our previous work on the split Cartan curve of level 13 and allows us to consider modular curves that may...
Gespeichert in:
Veröffentlicht in: | Compositio mathematica 2023-06, Vol.159 (6), p.1111-1152, Article 1111 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1152 |
---|---|
container_issue | 6 |
container_start_page | 1111 |
container_title | Compositio mathematica |
container_volume | 159 |
creator | Balakrishnan, Jennifer S. Dogra, Netan Müller, J. Steffen Tuitman, Jan Vonk, Jan |
description | We describe how the quadratic Chabauty method may be applied to determine the set of rational points on modular curves of genus $g>1$ whose Jacobians have Mordell–Weil rank $g$. This extends our previous work on the split Cartan curve of level 13 and allows us to consider modular curves that may have few known rational points or non-trivial local height contributions at primes of bad reduction. We illustrate our algorithms with a number of examples where we determine the set of rational points on several modular curves of genus 2 and 3: this includes Atkin–Lehner quotients $X_0^+(N)$ of prime level $N$, the curve $X_{S_4}(13)$, as well as a few other curves relevant to Mazur's Program B. We also compute the set of rational points on the genus 6 non-split Cartan modular curve $X_{\scriptstyle \mathrm { ns}} ^+ (17)$. |
doi_str_mv | 10.1112/S0010437X23007170 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2813499828</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1112_S0010437X23007170</cupid><sourcerecordid>2813499828</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-1015637027ffd88d4d1d46b0a8deac0113c027ffef518db62d792d77102087543</originalsourceid><addsrcrecordid>eNp1kF1LwzAUhoMoOKc_wLuA19VzkrTJvBBk-AWCiArelTRJt452nUkq27-3c0NF8eJwLt73OR8vIccIp4jIzp4AEASXr4wDSJSwQwaYSkhSJbJdMljLyVrfJwchzACAKaYG5OKx09brWBk6nupCd3FFy9bTprVdrT01nX934ZzqetL6Kk6bQPXcUrfUzaJ24ZDslboO7mjbh-Tl-up5fJvcP9zcjS_vEyNAxQQB04xLYLIsrVJWWLQiK0Ar67QBRG4-NVemqGyRMStHfUkEBkqmgg_JyWbuwrdvnQsxn7Wdn_crc6aQi9Go_6Z34cZlfBuCd2W-8FWj_SpHyNcx5X9i6hn5izFV7PNo59Hrqv4iw5Zc_iD5ltRN4Ss7cd9H_b_vA-eJed4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2813499828</pqid></control><display><type>article</type><title>Quadratic Chabauty for modular curves: algorithms and examples</title><source>Cambridge University Press Journals Complete</source><creator>Balakrishnan, Jennifer S. ; Dogra, Netan ; Müller, J. Steffen ; Tuitman, Jan ; Vonk, Jan</creator><creatorcontrib>Balakrishnan, Jennifer S. ; Dogra, Netan ; Müller, J. Steffen ; Tuitman, Jan ; Vonk, Jan</creatorcontrib><description>We describe how the quadratic Chabauty method may be applied to determine the set of rational points on modular curves of genus $g>1$ whose Jacobians have Mordell–Weil rank $g$. This extends our previous work on the split Cartan curve of level 13 and allows us to consider modular curves that may have few known rational points or non-trivial local height contributions at primes of bad reduction. We illustrate our algorithms with a number of examples where we determine the set of rational points on several modular curves of genus 2 and 3: this includes Atkin–Lehner quotients $X_0^+(N)$ of prime level $N$, the curve $X_{S_4}(13)$, as well as a few other curves relevant to Mazur's Program B. We also compute the set of rational points on the genus 6 non-split Cartan modular curve $X_{\scriptstyle \mathrm { ns}} ^+ (17)$.</description><identifier>ISSN: 0010-437X</identifier><identifier>EISSN: 1570-5846</identifier><identifier>DOI: 10.1112/S0010437X23007170</identifier><language>eng</language><publisher>London, UK: London Mathematical Society</publisher><subject>Algorithms ; Jacobians</subject><ispartof>Compositio mathematica, 2023-06, Vol.159 (6), p.1111-1152, Article 1111</ispartof><rights>2023 The Author(s)</rights><rights>2023 The Author(s). This work is licensed under the Creative Commons Attribution License https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-1015637027ffd88d4d1d46b0a8deac0113c027ffef518db62d792d77102087543</citedby><cites>FETCH-LOGICAL-c408t-1015637027ffd88d4d1d46b0a8deac0113c027ffef518db62d792d77102087543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0010437X23007170/type/journal_article$$EHTML$$P50$$Gcambridge$$Hfree_for_read</linktohtml><link.rule.ids>164,314,776,780,27903,27904,55606</link.rule.ids></links><search><creatorcontrib>Balakrishnan, Jennifer S.</creatorcontrib><creatorcontrib>Dogra, Netan</creatorcontrib><creatorcontrib>Müller, J. Steffen</creatorcontrib><creatorcontrib>Tuitman, Jan</creatorcontrib><creatorcontrib>Vonk, Jan</creatorcontrib><title>Quadratic Chabauty for modular curves: algorithms and examples</title><title>Compositio mathematica</title><addtitle>Compositio Math</addtitle><description>We describe how the quadratic Chabauty method may be applied to determine the set of rational points on modular curves of genus $g>1$ whose Jacobians have Mordell–Weil rank $g$. This extends our previous work on the split Cartan curve of level 13 and allows us to consider modular curves that may have few known rational points or non-trivial local height contributions at primes of bad reduction. We illustrate our algorithms with a number of examples where we determine the set of rational points on several modular curves of genus 2 and 3: this includes Atkin–Lehner quotients $X_0^+(N)$ of prime level $N$, the curve $X_{S_4}(13)$, as well as a few other curves relevant to Mazur's Program B. We also compute the set of rational points on the genus 6 non-split Cartan modular curve $X_{\scriptstyle \mathrm { ns}} ^+ (17)$.</description><subject>Algorithms</subject><subject>Jacobians</subject><issn>0010-437X</issn><issn>1570-5846</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>IKXGN</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kF1LwzAUhoMoOKc_wLuA19VzkrTJvBBk-AWCiArelTRJt452nUkq27-3c0NF8eJwLt73OR8vIccIp4jIzp4AEASXr4wDSJSwQwaYSkhSJbJdMljLyVrfJwchzACAKaYG5OKx09brWBk6nupCd3FFy9bTprVdrT01nX934ZzqetL6Kk6bQPXcUrfUzaJ24ZDslboO7mjbh-Tl-up5fJvcP9zcjS_vEyNAxQQB04xLYLIsrVJWWLQiK0Ar67QBRG4-NVemqGyRMStHfUkEBkqmgg_JyWbuwrdvnQsxn7Wdn_crc6aQi9Go_6Z34cZlfBuCd2W-8FWj_SpHyNcx5X9i6hn5izFV7PNo59Hrqv4iw5Zc_iD5ltRN4Ss7cd9H_b_vA-eJed4</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Balakrishnan, Jennifer S.</creator><creator>Dogra, Netan</creator><creator>Müller, J. Steffen</creator><creator>Tuitman, Jan</creator><creator>Vonk, Jan</creator><general>London Mathematical Society</general><general>Cambridge University Press</general><scope>IKXGN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20230601</creationdate><title>Quadratic Chabauty for modular curves: algorithms and examples</title><author>Balakrishnan, Jennifer S. ; Dogra, Netan ; Müller, J. Steffen ; Tuitman, Jan ; Vonk, Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-1015637027ffd88d4d1d46b0a8deac0113c027ffef518db62d792d77102087543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Jacobians</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Balakrishnan, Jennifer S.</creatorcontrib><creatorcontrib>Dogra, Netan</creatorcontrib><creatorcontrib>Müller, J. Steffen</creatorcontrib><creatorcontrib>Tuitman, Jan</creatorcontrib><creatorcontrib>Vonk, Jan</creatorcontrib><collection>Cambridge Journals Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Compositio mathematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Balakrishnan, Jennifer S.</au><au>Dogra, Netan</au><au>Müller, J. Steffen</au><au>Tuitman, Jan</au><au>Vonk, Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quadratic Chabauty for modular curves: algorithms and examples</atitle><jtitle>Compositio mathematica</jtitle><addtitle>Compositio Math</addtitle><date>2023-06-01</date><risdate>2023</risdate><volume>159</volume><issue>6</issue><spage>1111</spage><epage>1152</epage><pages>1111-1152</pages><artnum>1111</artnum><issn>0010-437X</issn><eissn>1570-5846</eissn><abstract>We describe how the quadratic Chabauty method may be applied to determine the set of rational points on modular curves of genus $g>1$ whose Jacobians have Mordell–Weil rank $g$. This extends our previous work on the split Cartan curve of level 13 and allows us to consider modular curves that may have few known rational points or non-trivial local height contributions at primes of bad reduction. We illustrate our algorithms with a number of examples where we determine the set of rational points on several modular curves of genus 2 and 3: this includes Atkin–Lehner quotients $X_0^+(N)$ of prime level $N$, the curve $X_{S_4}(13)$, as well as a few other curves relevant to Mazur's Program B. We also compute the set of rational points on the genus 6 non-split Cartan modular curve $X_{\scriptstyle \mathrm { ns}} ^+ (17)$.</abstract><cop>London, UK</cop><pub>London Mathematical Society</pub><doi>10.1112/S0010437X23007170</doi><tpages>42</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-437X |
ispartof | Compositio mathematica, 2023-06, Vol.159 (6), p.1111-1152, Article 1111 |
issn | 0010-437X 1570-5846 |
language | eng |
recordid | cdi_proquest_journals_2813499828 |
source | Cambridge University Press Journals Complete |
subjects | Algorithms Jacobians |
title | Quadratic Chabauty for modular curves: algorithms and examples |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T00%3A20%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quadratic%20Chabauty%20for%20modular%20curves:%20algorithms%20and%20examples&rft.jtitle=Compositio%20mathematica&rft.au=Balakrishnan,%20Jennifer%20S.&rft.date=2023-06-01&rft.volume=159&rft.issue=6&rft.spage=1111&rft.epage=1152&rft.pages=1111-1152&rft.artnum=1111&rft.issn=0010-437X&rft.eissn=1570-5846&rft_id=info:doi/10.1112/S0010437X23007170&rft_dat=%3Cproquest_cross%3E2813499828%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2813499828&rft_id=info:pmid/&rft_cupid=10_1112_S0010437X23007170&rfr_iscdi=true |