On the Bifurcation of Thresholds of the Essential Spectrum with a Spectral Singularity

We consider the Schrödinger operator on the plane with bounded potential , where is a real potential, and are compactly supported complex potentials, and is a small parameter, assuming that the lower part of the spectrum of the one-dimensional Schrödinger operator consists of a pair of isolated eige...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Differential equations 2023-02, Vol.59 (2), p.278-282
Hauptverfasser: Borisov, D. I., Zezyulin, D. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 282
container_issue 2
container_start_page 278
container_title Differential equations
container_volume 59
creator Borisov, D. I.
Zezyulin, D. A.
description We consider the Schrödinger operator on the plane with bounded potential , where is a real potential, and are compactly supported complex potentials, and is a small parameter, assuming that the lower part of the spectrum of the one-dimensional Schrödinger operator consists of a pair of isolated eigenvalues and the essential spectrum of the operator has a virtual level at its lower edge and a spectral singularity inside. Additionally, we assume that there is a certain superposition of eigenvalues of the operator with the virtual level and spectral singularity of the operator ; this leads to the emergence of a special threshold in the essential spectrum of the perturbed operator, with the perturbation leading to a bifurcation of this threshold into eigenvalues and resonances with multiplicity doubling. The bifurcation scenario described in this paper is qualitatively different from the previously known ones.
doi_str_mv 10.1134/S0012266123020118
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2813001218</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A749115070</galeid><sourcerecordid>A749115070</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-114958c395d6de7a34d27511675ba5be1401f512fcfe09cfc8ae964655c5b3b63</originalsourceid><addsrcrecordid>eNp1kF9LwzAUxYMoOKcfwLeCz525SZO2j3PMPzDYw6avJU2TLaNLZtIi-_amVPBB5D5cbs75JScXoXvAMwCaPW4wBkI4B0IxwQDFBZoAx0VKcUEv0WSQ00G_RjchHDDGZQ5sgj7WNun2KnkyuvdSdMbZxOlku_cq7F3bhGEaDMsQlO2MaJPNScnO98fky3T7RPzMg2Dsrm-FN935Fl1p0QZ199On6P15uV28pqv1y9tivkolZaxLAbKSFZKWrOGNygXNGpIzAJ6zWrBaQYZBMyBaaoVLqWUhVMkzzphkNa05naKH8d6Td5-9Cl11cL238cmKFECHX0MRXbPRtROtqozVLuaVsRp1NNJZpU08n-dZCcBwjiMAIyC9C8ErXZ28OQp_rgBXw76rP_uODBmZEL12p_xvlP-hb_J7gEo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2813001218</pqid></control><display><type>article</type><title>On the Bifurcation of Thresholds of the Essential Spectrum with a Spectral Singularity</title><source>SpringerNature Journals</source><creator>Borisov, D. I. ; Zezyulin, D. A.</creator><creatorcontrib>Borisov, D. I. ; Zezyulin, D. A.</creatorcontrib><description>We consider the Schrödinger operator on the plane with bounded potential , where is a real potential, and are compactly supported complex potentials, and is a small parameter, assuming that the lower part of the spectrum of the one-dimensional Schrödinger operator consists of a pair of isolated eigenvalues and the essential spectrum of the operator has a virtual level at its lower edge and a spectral singularity inside. Additionally, we assume that there is a certain superposition of eigenvalues of the operator with the virtual level and spectral singularity of the operator ; this leads to the emergence of a special threshold in the essential spectrum of the perturbed operator, with the perturbation leading to a bifurcation of this threshold into eigenvalues and resonances with multiplicity doubling. The bifurcation scenario described in this paper is qualitatively different from the previously known ones.</description><identifier>ISSN: 0012-2661</identifier><identifier>EISSN: 1608-3083</identifier><identifier>DOI: 10.1134/S0012266123020118</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Bifurcations ; Difference and Functional Equations ; Differential equations ; Eigenvalues ; Mathematics ; Mathematics and Statistics ; Operators (mathematics) ; Ordinary Differential Equations ; Partial Differential Equations ; Perturbation ; Short Communications ; Singularities</subject><ispartof>Differential equations, 2023-02, Vol.59 (2), p.278-282</ispartof><rights>Pleiades Publishing, Ltd. 2023</rights><rights>COPYRIGHT 2023 Springer</rights><rights>Pleiades Publishing, Ltd. 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-114958c395d6de7a34d27511675ba5be1401f512fcfe09cfc8ae964655c5b3b63</citedby><cites>FETCH-LOGICAL-c355t-114958c395d6de7a34d27511675ba5be1401f512fcfe09cfc8ae964655c5b3b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0012266123020118$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0012266123020118$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27926,27927,41490,42559,51321</link.rule.ids></links><search><creatorcontrib>Borisov, D. I.</creatorcontrib><creatorcontrib>Zezyulin, D. A.</creatorcontrib><title>On the Bifurcation of Thresholds of the Essential Spectrum with a Spectral Singularity</title><title>Differential equations</title><addtitle>Diff Equat</addtitle><description>We consider the Schrödinger operator on the plane with bounded potential , where is a real potential, and are compactly supported complex potentials, and is a small parameter, assuming that the lower part of the spectrum of the one-dimensional Schrödinger operator consists of a pair of isolated eigenvalues and the essential spectrum of the operator has a virtual level at its lower edge and a spectral singularity inside. Additionally, we assume that there is a certain superposition of eigenvalues of the operator with the virtual level and spectral singularity of the operator ; this leads to the emergence of a special threshold in the essential spectrum of the perturbed operator, with the perturbation leading to a bifurcation of this threshold into eigenvalues and resonances with multiplicity doubling. The bifurcation scenario described in this paper is qualitatively different from the previously known ones.</description><subject>Bifurcations</subject><subject>Difference and Functional Equations</subject><subject>Differential equations</subject><subject>Eigenvalues</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators (mathematics)</subject><subject>Ordinary Differential Equations</subject><subject>Partial Differential Equations</subject><subject>Perturbation</subject><subject>Short Communications</subject><subject>Singularities</subject><issn>0012-2661</issn><issn>1608-3083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kF9LwzAUxYMoOKcfwLeCz525SZO2j3PMPzDYw6avJU2TLaNLZtIi-_amVPBB5D5cbs75JScXoXvAMwCaPW4wBkI4B0IxwQDFBZoAx0VKcUEv0WSQ00G_RjchHDDGZQ5sgj7WNun2KnkyuvdSdMbZxOlku_cq7F3bhGEaDMsQlO2MaJPNScnO98fky3T7RPzMg2Dsrm-FN935Fl1p0QZ199On6P15uV28pqv1y9tivkolZaxLAbKSFZKWrOGNygXNGpIzAJ6zWrBaQYZBMyBaaoVLqWUhVMkzzphkNa05naKH8d6Td5-9Cl11cL238cmKFECHX0MRXbPRtROtqozVLuaVsRp1NNJZpU08n-dZCcBwjiMAIyC9C8ErXZ28OQp_rgBXw76rP_uODBmZEL12p_xvlP-hb_J7gEo</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Borisov, D. I.</creator><creator>Zezyulin, D. A.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20230201</creationdate><title>On the Bifurcation of Thresholds of the Essential Spectrum with a Spectral Singularity</title><author>Borisov, D. I. ; Zezyulin, D. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-114958c395d6de7a34d27511675ba5be1401f512fcfe09cfc8ae964655c5b3b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bifurcations</topic><topic>Difference and Functional Equations</topic><topic>Differential equations</topic><topic>Eigenvalues</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators (mathematics)</topic><topic>Ordinary Differential Equations</topic><topic>Partial Differential Equations</topic><topic>Perturbation</topic><topic>Short Communications</topic><topic>Singularities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Borisov, D. I.</creatorcontrib><creatorcontrib>Zezyulin, D. A.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borisov, D. I.</au><au>Zezyulin, D. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Bifurcation of Thresholds of the Essential Spectrum with a Spectral Singularity</atitle><jtitle>Differential equations</jtitle><stitle>Diff Equat</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>59</volume><issue>2</issue><spage>278</spage><epage>282</epage><pages>278-282</pages><issn>0012-2661</issn><eissn>1608-3083</eissn><abstract>We consider the Schrödinger operator on the plane with bounded potential , where is a real potential, and are compactly supported complex potentials, and is a small parameter, assuming that the lower part of the spectrum of the one-dimensional Schrödinger operator consists of a pair of isolated eigenvalues and the essential spectrum of the operator has a virtual level at its lower edge and a spectral singularity inside. Additionally, we assume that there is a certain superposition of eigenvalues of the operator with the virtual level and spectral singularity of the operator ; this leads to the emergence of a special threshold in the essential spectrum of the perturbed operator, with the perturbation leading to a bifurcation of this threshold into eigenvalues and resonances with multiplicity doubling. The bifurcation scenario described in this paper is qualitatively different from the previously known ones.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0012266123020118</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0012-2661
ispartof Differential equations, 2023-02, Vol.59 (2), p.278-282
issn 0012-2661
1608-3083
language eng
recordid cdi_proquest_journals_2813001218
source SpringerNature Journals
subjects Bifurcations
Difference and Functional Equations
Differential equations
Eigenvalues
Mathematics
Mathematics and Statistics
Operators (mathematics)
Ordinary Differential Equations
Partial Differential Equations
Perturbation
Short Communications
Singularities
title On the Bifurcation of Thresholds of the Essential Spectrum with a Spectral Singularity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T12%3A45%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Bifurcation%20of%20Thresholds%20of%20the%20Essential%20Spectrum%20with%20a%20Spectral%20Singularity&rft.jtitle=Differential%20equations&rft.au=Borisov,%20D.%20I.&rft.date=2023-02-01&rft.volume=59&rft.issue=2&rft.spage=278&rft.epage=282&rft.pages=278-282&rft.issn=0012-2661&rft.eissn=1608-3083&rft_id=info:doi/10.1134/S0012266123020118&rft_dat=%3Cgale_proqu%3EA749115070%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2813001218&rft_id=info:pmid/&rft_galeid=A749115070&rfr_iscdi=true