Palygorskite–TiO2 nanocatalysts for photocatalytic degradation of tebuconazole in water
Palygorskite–TiO2 nanoparticles are frequently used as nanocatalysts. In the present study, two different nanocatalysts were developed based on the use of different palygorskite–TiO2 ratios: 40–60 and 10–90. The nanocomposites were investigated for the photocatalytic degradation of the common fungic...
Gespeichert in:
Veröffentlicht in: | Water and environment journal : WEJ 2023-05, Vol.37 (2), p.351-358 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 358 |
---|---|
container_issue | 2 |
container_start_page | 351 |
container_title | Water and environment journal : WEJ |
container_volume | 37 |
creator | Gianni, Eleni Panagiotaras, Dionisios Giannakis, Ioannis Papoulis, Dimitrios Bekiari, Vlasoula Panagopoulos, Georgios Petrounias, Petros Kalarakis, Alexandros |
description | Palygorskite–TiO2 nanoparticles are frequently used as nanocatalysts. In the present study, two different nanocatalysts were developed based on the use of different palygorskite–TiO2 ratios: 40–60 and 10–90. The nanocomposites were investigated for the photocatalytic degradation of the common fungicide tebuconazole (TEB), under aquatic conditions. The samples were extensively characterized by X‐ray powder diffraction, attenuated total reflectance–Fourier transform infrared spectroscopy, scanning electron microscopy and N2 specific surface area (SSA) by Brunauer–Emmett–Teller (BET) analytical techniques. The TiO2 nanoparticles were successfully dispersed on the mineral's surfaces and the photocatalytic activity reached 88.4% for the palygorskite–TiO2 ratio of 40:60, where the dispersion was better as proved by the total pore volume and BET parameters (0.49 cm3/g and 258 m2/g compared to 0.33 cm3/g and 220 m2/g of the 10:90 ratio). The photocatalytic efficiency of the proposed materials was significantly higher than Degussa P25 (33.2%), and that makes the palygorskite–TiO2 nanocomposites very promising for advanced application in fungicides' degradation in aquatic environments. |
doi_str_mv | 10.1111/wej.12842 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2812987518</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2812987518</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2232-ae3dbf1fabea6680c145d55c75f3252be8b5fe5bba8bdb7e391dba8562265d163</originalsourceid><addsrcrecordid>eNo9kM9KAzEQh4MoWKsH3yDgedtNsslmj1LqPwr1UBFPIdkkNXXdrElKqSffwTf0SVzb4lzmY-bHDHwAXKJ8hPoab8xqhDAv8BEYoLIoM0YrcvzPnJ6CsxhXeV6UFWMD8PIom-3Sh_jmkvn5-l64OYatbH0tU7-JKULrA-xefTqMkquhNssgtUzOt9BbmIxa176Vn74x0LVwI5MJ5-DEyiaai0Mfgqeb6WJyl83mt_eT61nWYUxwJg3RyiIrlZGM8bxGBdWU1iW1BFOsDFfUGqqU5Eqr0pAK6Z4pw5hRjRgZgqv93S74j7WJSaz8OrT9S4E5whUvKeJ9arxPbVxjtqIL7l2GrUC5-NMmem1ip008Tx92QH4BZ5VlSw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2812987518</pqid></control><display><type>article</type><title>Palygorskite–TiO2 nanocatalysts for photocatalytic degradation of tebuconazole in water</title><source>Access via Wiley Online Library</source><creator>Gianni, Eleni ; Panagiotaras, Dionisios ; Giannakis, Ioannis ; Papoulis, Dimitrios ; Bekiari, Vlasoula ; Panagopoulos, Georgios ; Petrounias, Petros ; Kalarakis, Alexandros</creator><creatorcontrib>Gianni, Eleni ; Panagiotaras, Dionisios ; Giannakis, Ioannis ; Papoulis, Dimitrios ; Bekiari, Vlasoula ; Panagopoulos, Georgios ; Petrounias, Petros ; Kalarakis, Alexandros</creatorcontrib><description>Palygorskite–TiO2 nanoparticles are frequently used as nanocatalysts. In the present study, two different nanocatalysts were developed based on the use of different palygorskite–TiO2 ratios: 40–60 and 10–90. The nanocomposites were investigated for the photocatalytic degradation of the common fungicide tebuconazole (TEB), under aquatic conditions. The samples were extensively characterized by X‐ray powder diffraction, attenuated total reflectance–Fourier transform infrared spectroscopy, scanning electron microscopy and N2 specific surface area (SSA) by Brunauer–Emmett–Teller (BET) analytical techniques. The TiO2 nanoparticles were successfully dispersed on the mineral's surfaces and the photocatalytic activity reached 88.4% for the palygorskite–TiO2 ratio of 40:60, where the dispersion was better as proved by the total pore volume and BET parameters (0.49 cm3/g and 258 m2/g compared to 0.33 cm3/g and 220 m2/g of the 10:90 ratio). The photocatalytic efficiency of the proposed materials was significantly higher than Degussa P25 (33.2%), and that makes the palygorskite–TiO2 nanocomposites very promising for advanced application in fungicides' degradation in aquatic environments.</description><identifier>ISSN: 1747-6585</identifier><identifier>EISSN: 1747-6593</identifier><identifier>DOI: 10.1111/wej.12842</identifier><language>eng</language><publisher>London: Wiley Subscription Services, Inc</publisher><subject>Analytical methods ; anatase ; Aquatic environment ; Biodegradation ; Catalytic activity ; Dispersion ; Electron microscopy ; Environmental degradation ; Fourier transforms ; fungicide ; Fungicides ; Infrared spectroscopy ; Nanocatalysis ; Nanocomposites ; Nanoparticles ; Palygorskite ; Photocatalysis ; Photodegradation ; Reflectance ; Scanning electron microscopy ; Tebuconazole ; Titanium dioxide</subject><ispartof>Water and environment journal : WEJ, 2023-05, Vol.37 (2), p.351-358</ispartof><rights>2023 CIWEM.</rights><rights>2023 CIWEM</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-4393-0908 ; 0000-0001-6008-8014 ; 0000-0002-9387-6612</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fwej.12842$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fwej.12842$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Gianni, Eleni</creatorcontrib><creatorcontrib>Panagiotaras, Dionisios</creatorcontrib><creatorcontrib>Giannakis, Ioannis</creatorcontrib><creatorcontrib>Papoulis, Dimitrios</creatorcontrib><creatorcontrib>Bekiari, Vlasoula</creatorcontrib><creatorcontrib>Panagopoulos, Georgios</creatorcontrib><creatorcontrib>Petrounias, Petros</creatorcontrib><creatorcontrib>Kalarakis, Alexandros</creatorcontrib><title>Palygorskite–TiO2 nanocatalysts for photocatalytic degradation of tebuconazole in water</title><title>Water and environment journal : WEJ</title><description>Palygorskite–TiO2 nanoparticles are frequently used as nanocatalysts. In the present study, two different nanocatalysts were developed based on the use of different palygorskite–TiO2 ratios: 40–60 and 10–90. The nanocomposites were investigated for the photocatalytic degradation of the common fungicide tebuconazole (TEB), under aquatic conditions. The samples were extensively characterized by X‐ray powder diffraction, attenuated total reflectance–Fourier transform infrared spectroscopy, scanning electron microscopy and N2 specific surface area (SSA) by Brunauer–Emmett–Teller (BET) analytical techniques. The TiO2 nanoparticles were successfully dispersed on the mineral's surfaces and the photocatalytic activity reached 88.4% for the palygorskite–TiO2 ratio of 40:60, where the dispersion was better as proved by the total pore volume and BET parameters (0.49 cm3/g and 258 m2/g compared to 0.33 cm3/g and 220 m2/g of the 10:90 ratio). The photocatalytic efficiency of the proposed materials was significantly higher than Degussa P25 (33.2%), and that makes the palygorskite–TiO2 nanocomposites very promising for advanced application in fungicides' degradation in aquatic environments.</description><subject>Analytical methods</subject><subject>anatase</subject><subject>Aquatic environment</subject><subject>Biodegradation</subject><subject>Catalytic activity</subject><subject>Dispersion</subject><subject>Electron microscopy</subject><subject>Environmental degradation</subject><subject>Fourier transforms</subject><subject>fungicide</subject><subject>Fungicides</subject><subject>Infrared spectroscopy</subject><subject>Nanocatalysis</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Palygorskite</subject><subject>Photocatalysis</subject><subject>Photodegradation</subject><subject>Reflectance</subject><subject>Scanning electron microscopy</subject><subject>Tebuconazole</subject><subject>Titanium dioxide</subject><issn>1747-6585</issn><issn>1747-6593</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kM9KAzEQh4MoWKsH3yDgedtNsslmj1LqPwr1UBFPIdkkNXXdrElKqSffwTf0SVzb4lzmY-bHDHwAXKJ8hPoab8xqhDAv8BEYoLIoM0YrcvzPnJ6CsxhXeV6UFWMD8PIom-3Sh_jmkvn5-l64OYatbH0tU7-JKULrA-xefTqMkquhNssgtUzOt9BbmIxa176Vn74x0LVwI5MJ5-DEyiaai0Mfgqeb6WJyl83mt_eT61nWYUxwJg3RyiIrlZGM8bxGBdWU1iW1BFOsDFfUGqqU5Eqr0pAK6Z4pw5hRjRgZgqv93S74j7WJSaz8OrT9S4E5whUvKeJ9arxPbVxjtqIL7l2GrUC5-NMmem1ip008Tx92QH4BZ5VlSw</recordid><startdate>202305</startdate><enddate>202305</enddate><creator>Gianni, Eleni</creator><creator>Panagiotaras, Dionisios</creator><creator>Giannakis, Ioannis</creator><creator>Papoulis, Dimitrios</creator><creator>Bekiari, Vlasoula</creator><creator>Panagopoulos, Georgios</creator><creator>Petrounias, Petros</creator><creator>Kalarakis, Alexandros</creator><general>Wiley Subscription Services, Inc</general><scope>7QH</scope><scope>7ST</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-4393-0908</orcidid><orcidid>https://orcid.org/0000-0001-6008-8014</orcidid><orcidid>https://orcid.org/0000-0002-9387-6612</orcidid></search><sort><creationdate>202305</creationdate><title>Palygorskite–TiO2 nanocatalysts for photocatalytic degradation of tebuconazole in water</title><author>Gianni, Eleni ; Panagiotaras, Dionisios ; Giannakis, Ioannis ; Papoulis, Dimitrios ; Bekiari, Vlasoula ; Panagopoulos, Georgios ; Petrounias, Petros ; Kalarakis, Alexandros</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2232-ae3dbf1fabea6680c145d55c75f3252be8b5fe5bba8bdb7e391dba8562265d163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analytical methods</topic><topic>anatase</topic><topic>Aquatic environment</topic><topic>Biodegradation</topic><topic>Catalytic activity</topic><topic>Dispersion</topic><topic>Electron microscopy</topic><topic>Environmental degradation</topic><topic>Fourier transforms</topic><topic>fungicide</topic><topic>Fungicides</topic><topic>Infrared spectroscopy</topic><topic>Nanocatalysis</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Palygorskite</topic><topic>Photocatalysis</topic><topic>Photodegradation</topic><topic>Reflectance</topic><topic>Scanning electron microscopy</topic><topic>Tebuconazole</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gianni, Eleni</creatorcontrib><creatorcontrib>Panagiotaras, Dionisios</creatorcontrib><creatorcontrib>Giannakis, Ioannis</creatorcontrib><creatorcontrib>Papoulis, Dimitrios</creatorcontrib><creatorcontrib>Bekiari, Vlasoula</creatorcontrib><creatorcontrib>Panagopoulos, Georgios</creatorcontrib><creatorcontrib>Petrounias, Petros</creatorcontrib><creatorcontrib>Kalarakis, Alexandros</creatorcontrib><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Water and environment journal : WEJ</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gianni, Eleni</au><au>Panagiotaras, Dionisios</au><au>Giannakis, Ioannis</au><au>Papoulis, Dimitrios</au><au>Bekiari, Vlasoula</au><au>Panagopoulos, Georgios</au><au>Petrounias, Petros</au><au>Kalarakis, Alexandros</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Palygorskite–TiO2 nanocatalysts for photocatalytic degradation of tebuconazole in water</atitle><jtitle>Water and environment journal : WEJ</jtitle><date>2023-05</date><risdate>2023</risdate><volume>37</volume><issue>2</issue><spage>351</spage><epage>358</epage><pages>351-358</pages><issn>1747-6585</issn><eissn>1747-6593</eissn><abstract>Palygorskite–TiO2 nanoparticles are frequently used as nanocatalysts. In the present study, two different nanocatalysts were developed based on the use of different palygorskite–TiO2 ratios: 40–60 and 10–90. The nanocomposites were investigated for the photocatalytic degradation of the common fungicide tebuconazole (TEB), under aquatic conditions. The samples were extensively characterized by X‐ray powder diffraction, attenuated total reflectance–Fourier transform infrared spectroscopy, scanning electron microscopy and N2 specific surface area (SSA) by Brunauer–Emmett–Teller (BET) analytical techniques. The TiO2 nanoparticles were successfully dispersed on the mineral's surfaces and the photocatalytic activity reached 88.4% for the palygorskite–TiO2 ratio of 40:60, where the dispersion was better as proved by the total pore volume and BET parameters (0.49 cm3/g and 258 m2/g compared to 0.33 cm3/g and 220 m2/g of the 10:90 ratio). The photocatalytic efficiency of the proposed materials was significantly higher than Degussa P25 (33.2%), and that makes the palygorskite–TiO2 nanocomposites very promising for advanced application in fungicides' degradation in aquatic environments.</abstract><cop>London</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/wej.12842</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-4393-0908</orcidid><orcidid>https://orcid.org/0000-0001-6008-8014</orcidid><orcidid>https://orcid.org/0000-0002-9387-6612</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1747-6585 |
ispartof | Water and environment journal : WEJ, 2023-05, Vol.37 (2), p.351-358 |
issn | 1747-6585 1747-6593 |
language | eng |
recordid | cdi_proquest_journals_2812987518 |
source | Access via Wiley Online Library |
subjects | Analytical methods anatase Aquatic environment Biodegradation Catalytic activity Dispersion Electron microscopy Environmental degradation Fourier transforms fungicide Fungicides Infrared spectroscopy Nanocatalysis Nanocomposites Nanoparticles Palygorskite Photocatalysis Photodegradation Reflectance Scanning electron microscopy Tebuconazole Titanium dioxide |
title | Palygorskite–TiO2 nanocatalysts for photocatalytic degradation of tebuconazole in water |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T10%3A14%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Palygorskite%E2%80%93TiO2%20nanocatalysts%20for%20photocatalytic%20degradation%20of%20tebuconazole%20in%20water&rft.jtitle=Water%20and%20environment%20journal%20:%20WEJ&rft.au=Gianni,%20Eleni&rft.date=2023-05&rft.volume=37&rft.issue=2&rft.spage=351&rft.epage=358&rft.pages=351-358&rft.issn=1747-6585&rft.eissn=1747-6593&rft_id=info:doi/10.1111/wej.12842&rft_dat=%3Cproquest_wiley%3E2812987518%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2812987518&rft_id=info:pmid/&rfr_iscdi=true |