Vector Quantization with Error Uniformly Distributed over an Arbitrary Set
For uniform scalar quantization, the error distribution is approximately a uniform distribution over an interval (which is also a 1-dimensional ball). Nevertheless, for lattice vector quantization, the error distribution is uniform not over a ball, but over the basic cell of the quantization lattice...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-01 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Chih Wei Ling Li, Cheuk Ting |
description | For uniform scalar quantization, the error distribution is approximately a uniform distribution over an interval (which is also a 1-dimensional ball). Nevertheless, for lattice vector quantization, the error distribution is uniform not over a ball, but over the basic cell of the quantization lattice. In this paper, we construct vector quantizers with periodic properties, where the error is uniformly distributed over the n-ball, or any other prescribed set. We then prove upper and lower bounds on the entropy of the quantized signals. We also discuss how our construction can be applied to give a randomized quantization scheme with a nonuniform error distribution. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2812873654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2812873654</sourcerecordid><originalsourceid>FETCH-proquest_journals_28128736543</originalsourceid><addsrcrecordid>eNqNiksKwjAUAIMgWLR3eOC60Cb9bUUr4k78bEuqKabURF9elHp6XXgAVwMzM2IBFyKJypTzCQud6-I45nnBs0wEbHtSZ7IIOy8N6bckbQ28NF2hQvz6o9GtxVs_wEo7Qt14UhewT4UgDSyw0YQSB9grmrFxK3unwh-nbL6uDstNdEf78MpR3VmP5ptqXia8LESepeK_6wMNRz06</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2812873654</pqid></control><display><type>article</type><title>Vector Quantization with Error Uniformly Distributed over an Arbitrary Set</title><source>Free E- Journals</source><creator>Chih Wei Ling ; Li, Cheuk Ting</creator><creatorcontrib>Chih Wei Ling ; Li, Cheuk Ting</creatorcontrib><description>For uniform scalar quantization, the error distribution is approximately a uniform distribution over an interval (which is also a 1-dimensional ball). Nevertheless, for lattice vector quantization, the error distribution is uniform not over a ball, but over the basic cell of the quantization lattice. In this paper, we construct vector quantizers with periodic properties, where the error is uniformly distributed over the n-ball, or any other prescribed set. We then prove upper and lower bounds on the entropy of the quantized signals. We also discuss how our construction can be applied to give a randomized quantization scheme with a nonuniform error distribution.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Counters ; Errors ; Vector quantization</subject><ispartof>arXiv.org, 2024-01</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>Chih Wei Ling</creatorcontrib><creatorcontrib>Li, Cheuk Ting</creatorcontrib><title>Vector Quantization with Error Uniformly Distributed over an Arbitrary Set</title><title>arXiv.org</title><description>For uniform scalar quantization, the error distribution is approximately a uniform distribution over an interval (which is also a 1-dimensional ball). Nevertheless, for lattice vector quantization, the error distribution is uniform not over a ball, but over the basic cell of the quantization lattice. In this paper, we construct vector quantizers with periodic properties, where the error is uniformly distributed over the n-ball, or any other prescribed set. We then prove upper and lower bounds on the entropy of the quantized signals. We also discuss how our construction can be applied to give a randomized quantization scheme with a nonuniform error distribution.</description><subject>Counters</subject><subject>Errors</subject><subject>Vector quantization</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNiksKwjAUAIMgWLR3eOC60Cb9bUUr4k78bEuqKabURF9elHp6XXgAVwMzM2IBFyKJypTzCQud6-I45nnBs0wEbHtSZ7IIOy8N6bckbQ28NF2hQvz6o9GtxVs_wEo7Qt14UhewT4UgDSyw0YQSB9grmrFxK3unwh-nbL6uDstNdEf78MpR3VmP5ptqXia8LESepeK_6wMNRz06</recordid><startdate>20240124</startdate><enddate>20240124</enddate><creator>Chih Wei Ling</creator><creator>Li, Cheuk Ting</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240124</creationdate><title>Vector Quantization with Error Uniformly Distributed over an Arbitrary Set</title><author>Chih Wei Ling ; Li, Cheuk Ting</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28128736543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Counters</topic><topic>Errors</topic><topic>Vector quantization</topic><toplevel>online_resources</toplevel><creatorcontrib>Chih Wei Ling</creatorcontrib><creatorcontrib>Li, Cheuk Ting</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chih Wei Ling</au><au>Li, Cheuk Ting</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Vector Quantization with Error Uniformly Distributed over an Arbitrary Set</atitle><jtitle>arXiv.org</jtitle><date>2024-01-24</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>For uniform scalar quantization, the error distribution is approximately a uniform distribution over an interval (which is also a 1-dimensional ball). Nevertheless, for lattice vector quantization, the error distribution is uniform not over a ball, but over the basic cell of the quantization lattice. In this paper, we construct vector quantizers with periodic properties, where the error is uniformly distributed over the n-ball, or any other prescribed set. We then prove upper and lower bounds on the entropy of the quantized signals. We also discuss how our construction can be applied to give a randomized quantization scheme with a nonuniform error distribution.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-01 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2812873654 |
source | Free E- Journals |
subjects | Counters Errors Vector quantization |
title | Vector Quantization with Error Uniformly Distributed over an Arbitrary Set |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T21%3A09%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Vector%20Quantization%20with%20Error%20Uniformly%20Distributed%20over%20an%20Arbitrary%20Set&rft.jtitle=arXiv.org&rft.au=Chih%20Wei%20Ling&rft.date=2024-01-24&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2812873654%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2812873654&rft_id=info:pmid/&rfr_iscdi=true |