A Current Reference With Multiple Nonlinear Current Mirrors to Reduce Noise, Mismatch, and Impact of Supply Voltage Variation

This brief presents two improved concepts for self-biased current references. The first approach consists of a current loop with not only one linear and one nonlinear current mirror, but with two stacked complementary nonlinear current mirrors. By this, noise, mismatch and impact of supply voltage v...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. II, Express briefs Express briefs, 2023-05, Vol.70 (5), p.1729-1733
Hauptverfasser: Veit, Dominik, Oehm, Jurgen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1733
container_issue 5
container_start_page 1729
container_title IEEE transactions on circuits and systems. II, Express briefs
container_volume 70
creator Veit, Dominik
Oehm, Jurgen
description This brief presents two improved concepts for self-biased current references. The first approach consists of a current loop with not only one linear and one nonlinear current mirror, but with two stacked complementary nonlinear current mirrors. By this, noise, mismatch and impact of supply voltage variation can be reduced by up to a factor of 2 (6 dB). The second approach is designed and manufactured for test purposes in a 0.18 \mu m 3.3V standard CMOS technology and consists of multiple nonlinear current mirrors connected in series within a loop. An evaluation of 20 die-to-die prototypes of this novel current reference concept shows that current noise, local transistor mismatch and impact of supply voltage variation can be reduced by up to 6 dB with two nonlinear current mirrors connected in series and by up to another 3 dB with each additional nonlinear current mirror. Furthermore, the suppression of global process tolerances can be significantly improved in both approaches by using nonlinear current mirrors, each consisting of a different type of transistor with uncorrelated oxide thickness statistics between these different transistor types. A Monte Carlo lot-to-lot simulation in the 0.18 \mu m CMOS technology with a sample size of 1000 shows that the expected worst-case tolerance ( \pm 3\sigma /mean) of those current references should be smaller than ±7%.
doi_str_mv 10.1109/TCSII.2023.3260164
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2812843813</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10077754</ieee_id><sourcerecordid>2812843813</sourcerecordid><originalsourceid>FETCH-LOGICAL-c247t-729f0ee8f53e3ffe3c68b71c092a199411c189d77a04f05a0032cb75593e7683</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhoMoWKt_QDwseG3qfiTZ7LEUPwKtgi31GLbbWbslzcbdzaEH_7uJLeJpBuZ5Z5gnim4JHhOCxcNyuiiKMcWUjRnNMMmSs2hA0jSPGRfkvO8TEXOe8MvoyvsdxlRgRgfR9wRNW-egDugdNHSNAvRhwhbN2yqYpgL0auvK1CDdHzk3zlnnUbBdaNOqnjEeRt3A72VQ2xGS9QYV-0aqgKxGi7ZpqgNa2SrIT0Ar6YwMxtbX0YWWlYebUx1Gy6fH5fQlnr09F9PJLFY04SHmVGgMkOuUAdMamMryNScKCyqJEAkhiuRiw7nEicapxN1ras3TVDDgWc6G0f1xbePsVws-lDvburq7WNKc0DxhOWEdRY-UctZ7B7psnNlLdygJLnvL5a_lsrdcnix3obtjyADAvwDmnKcJ-wFAQnkG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2812843813</pqid></control><display><type>article</type><title>A Current Reference With Multiple Nonlinear Current Mirrors to Reduce Noise, Mismatch, and Impact of Supply Voltage Variation</title><source>IEEE Xplore</source><creator>Veit, Dominik ; Oehm, Jurgen</creator><creatorcontrib>Veit, Dominik ; Oehm, Jurgen</creatorcontrib><description><![CDATA[This brief presents two improved concepts for self-biased current references. The first approach consists of a current loop with not only one linear and one nonlinear current mirror, but with two stacked complementary nonlinear current mirrors. By this, noise, mismatch and impact of supply voltage variation can be reduced by up to a factor of 2 (6 dB). The second approach is designed and manufactured for test purposes in a 0.18 <inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula> m 3.3V standard CMOS technology and consists of multiple nonlinear current mirrors connected in series within a loop. An evaluation of 20 die-to-die prototypes of this novel current reference concept shows that current noise, local transistor mismatch and impact of supply voltage variation can be reduced by up to 6 dB with two nonlinear current mirrors connected in series and by up to another 3 dB with each additional nonlinear current mirror. Furthermore, the suppression of global process tolerances can be significantly improved in both approaches by using nonlinear current mirrors, each consisting of a different type of transistor with uncorrelated oxide thickness statistics between these different transistor types. A Monte Carlo lot-to-lot simulation in the 0.18 <inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula> m CMOS technology with a sample size of 1000 shows that the expected worst-case tolerance (<inline-formula> <tex-math notation="LaTeX">\pm 3\sigma </tex-math></inline-formula>/mean) of those current references should be smaller than ±7%.]]></description><identifier>ISSN: 1549-7747</identifier><identifier>EISSN: 1558-3791</identifier><identifier>DOI: 10.1109/TCSII.2023.3260164</identifier><identifier>CODEN: ITCSFK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>CMOS ; CMOS technology ; constructive correlation ; current loop ; Current mirrors ; Current reference ; Damping ; Electric potential ; Mirrors ; nonlinear current mirror ; Production ; PTAT voltage generation ; Semiconductor devices ; Tolerances ; Topology ; Transistors ; Voltage</subject><ispartof>IEEE transactions on circuits and systems. II, Express briefs, 2023-05, Vol.70 (5), p.1729-1733</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c247t-729f0ee8f53e3ffe3c68b71c092a199411c189d77a04f05a0032cb75593e7683</cites><orcidid>0000-0002-6015-4285</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10077754$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10077754$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Veit, Dominik</creatorcontrib><creatorcontrib>Oehm, Jurgen</creatorcontrib><title>A Current Reference With Multiple Nonlinear Current Mirrors to Reduce Noise, Mismatch, and Impact of Supply Voltage Variation</title><title>IEEE transactions on circuits and systems. II, Express briefs</title><addtitle>TCSII</addtitle><description><![CDATA[This brief presents two improved concepts for self-biased current references. The first approach consists of a current loop with not only one linear and one nonlinear current mirror, but with two stacked complementary nonlinear current mirrors. By this, noise, mismatch and impact of supply voltage variation can be reduced by up to a factor of 2 (6 dB). The second approach is designed and manufactured for test purposes in a 0.18 <inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula> m 3.3V standard CMOS technology and consists of multiple nonlinear current mirrors connected in series within a loop. An evaluation of 20 die-to-die prototypes of this novel current reference concept shows that current noise, local transistor mismatch and impact of supply voltage variation can be reduced by up to 6 dB with two nonlinear current mirrors connected in series and by up to another 3 dB with each additional nonlinear current mirror. Furthermore, the suppression of global process tolerances can be significantly improved in both approaches by using nonlinear current mirrors, each consisting of a different type of transistor with uncorrelated oxide thickness statistics between these different transistor types. A Monte Carlo lot-to-lot simulation in the 0.18 <inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula> m CMOS technology with a sample size of 1000 shows that the expected worst-case tolerance (<inline-formula> <tex-math notation="LaTeX">\pm 3\sigma </tex-math></inline-formula>/mean) of those current references should be smaller than ±7%.]]></description><subject>CMOS</subject><subject>CMOS technology</subject><subject>constructive correlation</subject><subject>current loop</subject><subject>Current mirrors</subject><subject>Current reference</subject><subject>Damping</subject><subject>Electric potential</subject><subject>Mirrors</subject><subject>nonlinear current mirror</subject><subject>Production</subject><subject>PTAT voltage generation</subject><subject>Semiconductor devices</subject><subject>Tolerances</subject><subject>Topology</subject><subject>Transistors</subject><subject>Voltage</subject><issn>1549-7747</issn><issn>1558-3791</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhoMoWKt_QDwseG3qfiTZ7LEUPwKtgi31GLbbWbslzcbdzaEH_7uJLeJpBuZ5Z5gnim4JHhOCxcNyuiiKMcWUjRnNMMmSs2hA0jSPGRfkvO8TEXOe8MvoyvsdxlRgRgfR9wRNW-egDugdNHSNAvRhwhbN2yqYpgL0auvK1CDdHzk3zlnnUbBdaNOqnjEeRt3A72VQ2xGS9QYV-0aqgKxGi7ZpqgNa2SrIT0Ar6YwMxtbX0YWWlYebUx1Gy6fH5fQlnr09F9PJLFY04SHmVGgMkOuUAdMamMryNScKCyqJEAkhiuRiw7nEicapxN1ras3TVDDgWc6G0f1xbePsVws-lDvburq7WNKc0DxhOWEdRY-UctZ7B7psnNlLdygJLnvL5a_lsrdcnix3obtjyADAvwDmnKcJ-wFAQnkG</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Veit, Dominik</creator><creator>Oehm, Jurgen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6015-4285</orcidid></search><sort><creationdate>20230501</creationdate><title>A Current Reference With Multiple Nonlinear Current Mirrors to Reduce Noise, Mismatch, and Impact of Supply Voltage Variation</title><author>Veit, Dominik ; Oehm, Jurgen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c247t-729f0ee8f53e3ffe3c68b71c092a199411c189d77a04f05a0032cb75593e7683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CMOS</topic><topic>CMOS technology</topic><topic>constructive correlation</topic><topic>current loop</topic><topic>Current mirrors</topic><topic>Current reference</topic><topic>Damping</topic><topic>Electric potential</topic><topic>Mirrors</topic><topic>nonlinear current mirror</topic><topic>Production</topic><topic>PTAT voltage generation</topic><topic>Semiconductor devices</topic><topic>Tolerances</topic><topic>Topology</topic><topic>Transistors</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Veit, Dominik</creatorcontrib><creatorcontrib>Oehm, Jurgen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Veit, Dominik</au><au>Oehm, Jurgen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Current Reference With Multiple Nonlinear Current Mirrors to Reduce Noise, Mismatch, and Impact of Supply Voltage Variation</atitle><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle><stitle>TCSII</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>70</volume><issue>5</issue><spage>1729</spage><epage>1733</epage><pages>1729-1733</pages><issn>1549-7747</issn><eissn>1558-3791</eissn><coden>ITCSFK</coden><abstract><![CDATA[This brief presents two improved concepts for self-biased current references. The first approach consists of a current loop with not only one linear and one nonlinear current mirror, but with two stacked complementary nonlinear current mirrors. By this, noise, mismatch and impact of supply voltage variation can be reduced by up to a factor of 2 (6 dB). The second approach is designed and manufactured for test purposes in a 0.18 <inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula> m 3.3V standard CMOS technology and consists of multiple nonlinear current mirrors connected in series within a loop. An evaluation of 20 die-to-die prototypes of this novel current reference concept shows that current noise, local transistor mismatch and impact of supply voltage variation can be reduced by up to 6 dB with two nonlinear current mirrors connected in series and by up to another 3 dB with each additional nonlinear current mirror. Furthermore, the suppression of global process tolerances can be significantly improved in both approaches by using nonlinear current mirrors, each consisting of a different type of transistor with uncorrelated oxide thickness statistics between these different transistor types. A Monte Carlo lot-to-lot simulation in the 0.18 <inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula> m CMOS technology with a sample size of 1000 shows that the expected worst-case tolerance (<inline-formula> <tex-math notation="LaTeX">\pm 3\sigma </tex-math></inline-formula>/mean) of those current references should be smaller than ±7%.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSII.2023.3260164</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-6015-4285</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1549-7747
ispartof IEEE transactions on circuits and systems. II, Express briefs, 2023-05, Vol.70 (5), p.1729-1733
issn 1549-7747
1558-3791
language eng
recordid cdi_proquest_journals_2812843813
source IEEE Xplore
subjects CMOS
CMOS technology
constructive correlation
current loop
Current mirrors
Current reference
Damping
Electric potential
Mirrors
nonlinear current mirror
Production
PTAT voltage generation
Semiconductor devices
Tolerances
Topology
Transistors
Voltage
title A Current Reference With Multiple Nonlinear Current Mirrors to Reduce Noise, Mismatch, and Impact of Supply Voltage Variation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T03%3A27%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Current%20Reference%20With%20Multiple%20Nonlinear%20Current%20Mirrors%20to%20Reduce%20Noise,%20Mismatch,%20and%20Impact%20of%20Supply%20Voltage%20Variation&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20II,%20Express%20briefs&rft.au=Veit,%20Dominik&rft.date=2023-05-01&rft.volume=70&rft.issue=5&rft.spage=1729&rft.epage=1733&rft.pages=1729-1733&rft.issn=1549-7747&rft.eissn=1558-3791&rft.coden=ITCSFK&rft_id=info:doi/10.1109/TCSII.2023.3260164&rft_dat=%3Cproquest_RIE%3E2812843813%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2812843813&rft_id=info:pmid/&rft_ieee_id=10077754&rfr_iscdi=true