Detection of False Data Injection Attacks in Smart Grid Based on Joint Dynamic and Static State Estimation

Power system state estimation is an essential component of the modern power system energy management system (EMS), and accurate state estimation is an indispensable basis for subsequent work. However, the attacker can inject biases into measurements to launch false data injection attacks (FDIAs) in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2023-01, Vol.11, p.1-1
Hauptverfasser: Hu, Pengfei, Gao, Wengen, Li, Yunfei, Hua, Feng, Qiao, Lina, Zhang, Guoqing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 11
creator Hu, Pengfei
Gao, Wengen
Li, Yunfei
Hua, Feng
Qiao, Lina
Zhang, Guoqing
description Power system state estimation is an essential component of the modern power system energy management system (EMS), and accurate state estimation is an indispensable basis for subsequent work. However, the attacker can inject biases into measurements to launch false data injection attacks (FDIAs) in smart grids, which ultimately cause state estimates to deviate from security values. This paper proposed the joint use of static state estimation and dynamic state estimation to detect the FDIA, i.e. the joint use of weighted least squares (WLS) and extended Kalman filter (EKF) with exponential weighting function (WEKF), which improves the robustness of state estimation. Since the WLS estimation considers only the measurements at the current moment, the recursive feature of the WEKF enables the estimation process to involve both historical state and current measurements. Therefore, consistency tests and residual tests were performed using the estimations of WLS and WEKF to effectively detect FDIA. In addition, a cluster partitioning approach with approximate equal redundancy of subsystems is proposed to locate the FDIA. The detection of FDIA triggers the partitioning of the network system, and then the chi-square test is used separately in each sub-network to determine the location of FDIA. Finally, the experimental results in the IEEE-14 bus system and the IEEE-30 bus system demonstrate that the approach can effectively detect and locate FDIAs.
doi_str_mv 10.1109/ACCESS.2023.3273730
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2812843169</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10121030</ieee_id><doaj_id>oai_doaj_org_article_4470d421971c405487c509167474ed30</doaj_id><sourcerecordid>2812843169</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-285accc0db8fdb6e6b790930d2bf9d30430cf1941c942fb470db9a51624aadfd3</originalsourceid><addsrcrecordid>eNpNUctOwzAQjBBIVKVfAAdLnFv8ShwfS18UVeIQOFuO7SCHNi62e-DvcUiF6suuZndmbE-W3SM4Qwjyp_lisaqqGYaYzAhmhBF4lY0wKviU5KS4vuhvs0kILUynTFDORlm7NNGoaF0HXAPWch8MWMoowbZrz_g8Rqm-ArAdqA7SR7DxVoNnGYwGafzqbBfB8qeTB6uA7DSoooyp7YsBqxDtQfZCd9lN0-tPznWcfaxX74uX6e5ts13Md1NFIY9TXOZSKQV1XTa6LkxRMw45gRrXDdcEUgJVgzhFilPc1JSlTS5zVGAqpW40GWfbQVc72YqjT_b-RzhpxR_g_KdIr7BqbwTt2RQjzlAyz2nJVA45Khhl1CSvpPU4aB29-z6ZEEXrTr5L1xe4RLikJP1j2iLDlvIuBG-af1cERZ-RGDISfUbinFFiPQwsa4y5YCCMYBr_AvZji3Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2812843169</pqid></control><display><type>article</type><title>Detection of False Data Injection Attacks in Smart Grid Based on Joint Dynamic and Static State Estimation</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Hu, Pengfei ; Gao, Wengen ; Li, Yunfei ; Hua, Feng ; Qiao, Lina ; Zhang, Guoqing</creator><creatorcontrib>Hu, Pengfei ; Gao, Wengen ; Li, Yunfei ; Hua, Feng ; Qiao, Lina ; Zhang, Guoqing</creatorcontrib><description>Power system state estimation is an essential component of the modern power system energy management system (EMS), and accurate state estimation is an indispensable basis for subsequent work. However, the attacker can inject biases into measurements to launch false data injection attacks (FDIAs) in smart grids, which ultimately cause state estimates to deviate from security values. This paper proposed the joint use of static state estimation and dynamic state estimation to detect the FDIA, i.e. the joint use of weighted least squares (WLS) and extended Kalman filter (EKF) with exponential weighting function (WEKF), which improves the robustness of state estimation. Since the WLS estimation considers only the measurements at the current moment, the recursive feature of the WEKF enables the estimation process to involve both historical state and current measurements. Therefore, consistency tests and residual tests were performed using the estimations of WLS and WEKF to effectively detect FDIA. In addition, a cluster partitioning approach with approximate equal redundancy of subsystems is proposed to locate the FDIA. The detection of FDIA triggers the partitioning of the network system, and then the chi-square test is used separately in each sub-network to determine the location of FDIA. Finally, the experimental results in the IEEE-14 bus system and the IEEE-30 bus system demonstrate that the approach can effectively detect and locate FDIAs.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3273730</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>AC state estimation ; attack detection ; Chi-square test ; Computer security ; Consistency tests ; Current measurement ; Cyber security ; Energy management ; Extended Kalman filter ; false data injection ; Joint use ; Partitioning ; Power measurement ; Power system dynamics ; Power systems ; Redundancy ; smard grid ; Smart grid ; Smart grids ; State estimation ; Subsystems ; Weighting functions ; WEKF</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-285accc0db8fdb6e6b790930d2bf9d30430cf1941c942fb470db9a51624aadfd3</citedby><cites>FETCH-LOGICAL-c409t-285accc0db8fdb6e6b790930d2bf9d30430cf1941c942fb470db9a51624aadfd3</cites><orcidid>0000-0002-2679-4641 ; 0000-0001-7332-7096</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10121030$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27610,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Hu, Pengfei</creatorcontrib><creatorcontrib>Gao, Wengen</creatorcontrib><creatorcontrib>Li, Yunfei</creatorcontrib><creatorcontrib>Hua, Feng</creatorcontrib><creatorcontrib>Qiao, Lina</creatorcontrib><creatorcontrib>Zhang, Guoqing</creatorcontrib><title>Detection of False Data Injection Attacks in Smart Grid Based on Joint Dynamic and Static State Estimation</title><title>IEEE access</title><addtitle>Access</addtitle><description>Power system state estimation is an essential component of the modern power system energy management system (EMS), and accurate state estimation is an indispensable basis for subsequent work. However, the attacker can inject biases into measurements to launch false data injection attacks (FDIAs) in smart grids, which ultimately cause state estimates to deviate from security values. This paper proposed the joint use of static state estimation and dynamic state estimation to detect the FDIA, i.e. the joint use of weighted least squares (WLS) and extended Kalman filter (EKF) with exponential weighting function (WEKF), which improves the robustness of state estimation. Since the WLS estimation considers only the measurements at the current moment, the recursive feature of the WEKF enables the estimation process to involve both historical state and current measurements. Therefore, consistency tests and residual tests were performed using the estimations of WLS and WEKF to effectively detect FDIA. In addition, a cluster partitioning approach with approximate equal redundancy of subsystems is proposed to locate the FDIA. The detection of FDIA triggers the partitioning of the network system, and then the chi-square test is used separately in each sub-network to determine the location of FDIA. Finally, the experimental results in the IEEE-14 bus system and the IEEE-30 bus system demonstrate that the approach can effectively detect and locate FDIAs.</description><subject>AC state estimation</subject><subject>attack detection</subject><subject>Chi-square test</subject><subject>Computer security</subject><subject>Consistency tests</subject><subject>Current measurement</subject><subject>Cyber security</subject><subject>Energy management</subject><subject>Extended Kalman filter</subject><subject>false data injection</subject><subject>Joint use</subject><subject>Partitioning</subject><subject>Power measurement</subject><subject>Power system dynamics</subject><subject>Power systems</subject><subject>Redundancy</subject><subject>smard grid</subject><subject>Smart grid</subject><subject>Smart grids</subject><subject>State estimation</subject><subject>Subsystems</subject><subject>Weighting functions</subject><subject>WEKF</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctOwzAQjBBIVKVfAAdLnFv8ShwfS18UVeIQOFuO7SCHNi62e-DvcUiF6suuZndmbE-W3SM4Qwjyp_lisaqqGYaYzAhmhBF4lY0wKviU5KS4vuhvs0kILUynTFDORlm7NNGoaF0HXAPWch8MWMoowbZrz_g8Rqm-ArAdqA7SR7DxVoNnGYwGafzqbBfB8qeTB6uA7DSoooyp7YsBqxDtQfZCd9lN0-tPznWcfaxX74uX6e5ts13Md1NFIY9TXOZSKQV1XTa6LkxRMw45gRrXDdcEUgJVgzhFilPc1JSlTS5zVGAqpW40GWfbQVc72YqjT_b-RzhpxR_g_KdIr7BqbwTt2RQjzlAyz2nJVA45Khhl1CSvpPU4aB29-z6ZEEXrTr5L1xe4RLikJP1j2iLDlvIuBG-af1cERZ-RGDISfUbinFFiPQwsa4y5YCCMYBr_AvZji3Q</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Hu, Pengfei</creator><creator>Gao, Wengen</creator><creator>Li, Yunfei</creator><creator>Hua, Feng</creator><creator>Qiao, Lina</creator><creator>Zhang, Guoqing</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2679-4641</orcidid><orcidid>https://orcid.org/0000-0001-7332-7096</orcidid></search><sort><creationdate>20230101</creationdate><title>Detection of False Data Injection Attacks in Smart Grid Based on Joint Dynamic and Static State Estimation</title><author>Hu, Pengfei ; Gao, Wengen ; Li, Yunfei ; Hua, Feng ; Qiao, Lina ; Zhang, Guoqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-285accc0db8fdb6e6b790930d2bf9d30430cf1941c942fb470db9a51624aadfd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>AC state estimation</topic><topic>attack detection</topic><topic>Chi-square test</topic><topic>Computer security</topic><topic>Consistency tests</topic><topic>Current measurement</topic><topic>Cyber security</topic><topic>Energy management</topic><topic>Extended Kalman filter</topic><topic>false data injection</topic><topic>Joint use</topic><topic>Partitioning</topic><topic>Power measurement</topic><topic>Power system dynamics</topic><topic>Power systems</topic><topic>Redundancy</topic><topic>smard grid</topic><topic>Smart grid</topic><topic>Smart grids</topic><topic>State estimation</topic><topic>Subsystems</topic><topic>Weighting functions</topic><topic>WEKF</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Pengfei</creatorcontrib><creatorcontrib>Gao, Wengen</creatorcontrib><creatorcontrib>Li, Yunfei</creatorcontrib><creatorcontrib>Hua, Feng</creatorcontrib><creatorcontrib>Qiao, Lina</creatorcontrib><creatorcontrib>Zhang, Guoqing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Pengfei</au><au>Gao, Wengen</au><au>Li, Yunfei</au><au>Hua, Feng</au><au>Qiao, Lina</au><au>Zhang, Guoqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection of False Data Injection Attacks in Smart Grid Based on Joint Dynamic and Static State Estimation</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Power system state estimation is an essential component of the modern power system energy management system (EMS), and accurate state estimation is an indispensable basis for subsequent work. However, the attacker can inject biases into measurements to launch false data injection attacks (FDIAs) in smart grids, which ultimately cause state estimates to deviate from security values. This paper proposed the joint use of static state estimation and dynamic state estimation to detect the FDIA, i.e. the joint use of weighted least squares (WLS) and extended Kalman filter (EKF) with exponential weighting function (WEKF), which improves the robustness of state estimation. Since the WLS estimation considers only the measurements at the current moment, the recursive feature of the WEKF enables the estimation process to involve both historical state and current measurements. Therefore, consistency tests and residual tests were performed using the estimations of WLS and WEKF to effectively detect FDIA. In addition, a cluster partitioning approach with approximate equal redundancy of subsystems is proposed to locate the FDIA. The detection of FDIA triggers the partitioning of the network system, and then the chi-square test is used separately in each sub-network to determine the location of FDIA. Finally, the experimental results in the IEEE-14 bus system and the IEEE-30 bus system demonstrate that the approach can effectively detect and locate FDIAs.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3273730</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-2679-4641</orcidid><orcidid>https://orcid.org/0000-0001-7332-7096</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2023-01, Vol.11, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2812843169
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects AC state estimation
attack detection
Chi-square test
Computer security
Consistency tests
Current measurement
Cyber security
Energy management
Extended Kalman filter
false data injection
Joint use
Partitioning
Power measurement
Power system dynamics
Power systems
Redundancy
smard grid
Smart grid
Smart grids
State estimation
Subsystems
Weighting functions
WEKF
title Detection of False Data Injection Attacks in Smart Grid Based on Joint Dynamic and Static State Estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T03%3A00%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20of%20False%20Data%20Injection%20Attacks%20in%20Smart%20Grid%20Based%20on%20Joint%20Dynamic%20and%20Static%20State%20Estimation&rft.jtitle=IEEE%20access&rft.au=Hu,%20Pengfei&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3273730&rft_dat=%3Cproquest_doaj_%3E2812843169%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2812843169&rft_id=info:pmid/&rft_ieee_id=10121030&rft_doaj_id=oai_doaj_org_article_4470d421971c405487c509167474ed30&rfr_iscdi=true