Study on the Calculation Method of Correlation Length of Power Spectral Density Function of Two-Phase Flow in Heat Transfer Tube of Steam Generator

In nuclear reactors, turbulent excitation is an essential mechanism of flow-induced vibration. Turbulence exists everywhere in the heat transfer tubes, fuel rods and valves. Among three main research methods for turbulence excitation, the first is the fluid-structure coupling method, which can fully...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Strength of materials 2023, Vol.55 (1), p.205-213
Hauptverfasser: Huang, X., Liu, S., Feng, Z. P., Cai, F. C., Zhang, K., Huangfu, Y. Z.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 213
container_issue 1
container_start_page 205
container_title Strength of materials
container_volume 55
creator Huang, X.
Liu, S.
Feng, Z. P.
Cai, F. C.
Zhang, K.
Huangfu, Y. Z.
description In nuclear reactors, turbulent excitation is an essential mechanism of flow-induced vibration. Turbulence exists everywhere in the heat transfer tubes, fuel rods and valves. Among three main research methods for turbulence excitation, the first is the fluid-structure coupling method, which can fully consider the fluid structure coupling effect but has not yet obtained a strict mathematical solution. The second is to make reasonable assumptions and use the classical random vibration theory to calculate the vibration response of the structure. This method is simple and efficient, but it cannot consider the nonlinear factors such as clearance, collision and friction. Thirdly, the transient analysis method is used to calculate the vibration response of the structure. This method can consider nonlinear factors, and the difficulty is to obtain the time history of turbulent excitation force acting on the structure. This paper presents a calculation method of the correlation length of the power spectral density function of two-phase flow in the heat transfer tube of steam generator based on global optimization fitting, which can determine the correlation length of the power spectral density function of two-phase flow in the heat transfer tube of steam generator efficiently and conveniently. It provides necessary input for the time history of power spectral density to turbulent excitation forc, and lays a foundation for more accurate transient analysis method for random turbulent excitation vibration analysis, design improvement, and safety evaluation of tube bundle equipment.
doi_str_mv 10.1007/s11223-023-00514-7
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2812752370</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A748966416</galeid><sourcerecordid>A748966416</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-36d6671e2c426528a3094a32d7e6e11756a782293b15c91400806086ffb19fda3</originalsourceid><addsrcrecordid>eNp9kd9q2zAUh8VYYVm3F9iVYFe9cKc_tmRflrRpCykrTXYtFPkocXGkVJLJ8hx74clzYfSmiIPQj--TdDgIfaPkkhIif0RKGeMFGYtUtCzkBzSjleRFw1n1Ec0I4U3BOBWf0OcYnwkhNeX1DP1ZpaE9Ye9w2gGe694MvU5dPj9A2vkWe4vnPgR4TZfgtmk3po_-CAGvDmBS0D2-Bhe7dMKLwZl_ZEbWR1887nQEvOj9EXcO34FOeB20izbL62EDI7dKoPf4FhwEnXz4gs6s7iN8fd3P0a_FzXp-Vyx_3t7Pr5aF4SVPBRetEJICMyUTFas1J02pOWslCKBUVkLLmrGGb2hlGlrmlokgtbB2Qxvban6Ovk_3HoJ_GSAm9eyH4PKTitWUyYpxSTJ1OVFb3YPqnPW5X5NXC_vOeAe2y_mVLOtGiJKKLFy8ETKT4Hfa6iFGdb96esuyiTXBxxjAqkPo9jqcFCVqnKyaJqvIWONklcwSn6SYYbeF8P_f71h_AV9opH0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2812752370</pqid></control><display><type>article</type><title>Study on the Calculation Method of Correlation Length of Power Spectral Density Function of Two-Phase Flow in Heat Transfer Tube of Steam Generator</title><source>SpringerLink Journals</source><creator>Huang, X. ; Liu, S. ; Feng, Z. P. ; Cai, F. C. ; Zhang, K. ; Huangfu, Y. Z.</creator><creatorcontrib>Huang, X. ; Liu, S. ; Feng, Z. P. ; Cai, F. C. ; Zhang, K. ; Huangfu, Y. Z.</creatorcontrib><description>In nuclear reactors, turbulent excitation is an essential mechanism of flow-induced vibration. Turbulence exists everywhere in the heat transfer tubes, fuel rods and valves. Among three main research methods for turbulence excitation, the first is the fluid-structure coupling method, which can fully consider the fluid structure coupling effect but has not yet obtained a strict mathematical solution. The second is to make reasonable assumptions and use the classical random vibration theory to calculate the vibration response of the structure. This method is simple and efficient, but it cannot consider the nonlinear factors such as clearance, collision and friction. Thirdly, the transient analysis method is used to calculate the vibration response of the structure. This method can consider nonlinear factors, and the difficulty is to obtain the time history of turbulent excitation force acting on the structure. This paper presents a calculation method of the correlation length of the power spectral density function of two-phase flow in the heat transfer tube of steam generator based on global optimization fitting, which can determine the correlation length of the power spectral density function of two-phase flow in the heat transfer tube of steam generator efficiently and conveniently. It provides necessary input for the time history of power spectral density to turbulent excitation forc, and lays a foundation for more accurate transient analysis method for random turbulent excitation vibration analysis, design improvement, and safety evaluation of tube bundle equipment.</description><identifier>ISSN: 0039-2316</identifier><identifier>EISSN: 1573-9325</identifier><identifier>DOI: 10.1007/s11223-023-00514-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analysis ; Boilers ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Coupling ; Excitation ; Flow generated vibrations ; Fluid flow ; Global optimization ; Heat transfer ; Materials Science ; Mathematical analysis ; Methods ; Nuclear facilities ; Nuclear fuel elements ; Nuclear reactors ; Nuclear safety ; Power spectral density ; Random vibration ; Solid Mechanics ; Specific gravity ; Spectral density function ; Transient analysis ; Tubes ; Turbulence ; Turbulent flow ; Two phase flow ; Vibration analysis ; Vibration response</subject><ispartof>Strength of materials, 2023, Vol.55 (1), p.205-213</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c343t-36d6671e2c426528a3094a32d7e6e11756a782293b15c91400806086ffb19fda3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11223-023-00514-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11223-023-00514-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Huang, X.</creatorcontrib><creatorcontrib>Liu, S.</creatorcontrib><creatorcontrib>Feng, Z. P.</creatorcontrib><creatorcontrib>Cai, F. C.</creatorcontrib><creatorcontrib>Zhang, K.</creatorcontrib><creatorcontrib>Huangfu, Y. Z.</creatorcontrib><title>Study on the Calculation Method of Correlation Length of Power Spectral Density Function of Two-Phase Flow in Heat Transfer Tube of Steam Generator</title><title>Strength of materials</title><addtitle>Strength Mater</addtitle><description>In nuclear reactors, turbulent excitation is an essential mechanism of flow-induced vibration. Turbulence exists everywhere in the heat transfer tubes, fuel rods and valves. Among three main research methods for turbulence excitation, the first is the fluid-structure coupling method, which can fully consider the fluid structure coupling effect but has not yet obtained a strict mathematical solution. The second is to make reasonable assumptions and use the classical random vibration theory to calculate the vibration response of the structure. This method is simple and efficient, but it cannot consider the nonlinear factors such as clearance, collision and friction. Thirdly, the transient analysis method is used to calculate the vibration response of the structure. This method can consider nonlinear factors, and the difficulty is to obtain the time history of turbulent excitation force acting on the structure. This paper presents a calculation method of the correlation length of the power spectral density function of two-phase flow in the heat transfer tube of steam generator based on global optimization fitting, which can determine the correlation length of the power spectral density function of two-phase flow in the heat transfer tube of steam generator efficiently and conveniently. It provides necessary input for the time history of power spectral density to turbulent excitation forc, and lays a foundation for more accurate transient analysis method for random turbulent excitation vibration analysis, design improvement, and safety evaluation of tube bundle equipment.</description><subject>Analysis</subject><subject>Boilers</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Coupling</subject><subject>Excitation</subject><subject>Flow generated vibrations</subject><subject>Fluid flow</subject><subject>Global optimization</subject><subject>Heat transfer</subject><subject>Materials Science</subject><subject>Mathematical analysis</subject><subject>Methods</subject><subject>Nuclear facilities</subject><subject>Nuclear fuel elements</subject><subject>Nuclear reactors</subject><subject>Nuclear safety</subject><subject>Power spectral density</subject><subject>Random vibration</subject><subject>Solid Mechanics</subject><subject>Specific gravity</subject><subject>Spectral density function</subject><subject>Transient analysis</subject><subject>Tubes</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><subject>Two phase flow</subject><subject>Vibration analysis</subject><subject>Vibration response</subject><issn>0039-2316</issn><issn>1573-9325</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kd9q2zAUh8VYYVm3F9iVYFe9cKc_tmRflrRpCykrTXYtFPkocXGkVJLJ8hx74clzYfSmiIPQj--TdDgIfaPkkhIif0RKGeMFGYtUtCzkBzSjleRFw1n1Ec0I4U3BOBWf0OcYnwkhNeX1DP1ZpaE9Ye9w2gGe694MvU5dPj9A2vkWe4vnPgR4TZfgtmk3po_-CAGvDmBS0D2-Bhe7dMKLwZl_ZEbWR1887nQEvOj9EXcO34FOeB20izbL62EDI7dKoPf4FhwEnXz4gs6s7iN8fd3P0a_FzXp-Vyx_3t7Pr5aF4SVPBRetEJICMyUTFas1J02pOWslCKBUVkLLmrGGb2hlGlrmlokgtbB2Qxvban6Ovk_3HoJ_GSAm9eyH4PKTitWUyYpxSTJ1OVFb3YPqnPW5X5NXC_vOeAe2y_mVLOtGiJKKLFy8ETKT4Hfa6iFGdb96esuyiTXBxxjAqkPo9jqcFCVqnKyaJqvIWONklcwSn6SYYbeF8P_f71h_AV9opH0</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Huang, X.</creator><creator>Liu, S.</creator><creator>Feng, Z. P.</creator><creator>Cai, F. C.</creator><creator>Zhang, K.</creator><creator>Huangfu, Y. Z.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>2023</creationdate><title>Study on the Calculation Method of Correlation Length of Power Spectral Density Function of Two-Phase Flow in Heat Transfer Tube of Steam Generator</title><author>Huang, X. ; Liu, S. ; Feng, Z. P. ; Cai, F. C. ; Zhang, K. ; Huangfu, Y. Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-36d6671e2c426528a3094a32d7e6e11756a782293b15c91400806086ffb19fda3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Boilers</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Coupling</topic><topic>Excitation</topic><topic>Flow generated vibrations</topic><topic>Fluid flow</topic><topic>Global optimization</topic><topic>Heat transfer</topic><topic>Materials Science</topic><topic>Mathematical analysis</topic><topic>Methods</topic><topic>Nuclear facilities</topic><topic>Nuclear fuel elements</topic><topic>Nuclear reactors</topic><topic>Nuclear safety</topic><topic>Power spectral density</topic><topic>Random vibration</topic><topic>Solid Mechanics</topic><topic>Specific gravity</topic><topic>Spectral density function</topic><topic>Transient analysis</topic><topic>Tubes</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><topic>Two phase flow</topic><topic>Vibration analysis</topic><topic>Vibration response</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, X.</creatorcontrib><creatorcontrib>Liu, S.</creatorcontrib><creatorcontrib>Feng, Z. P.</creatorcontrib><creatorcontrib>Cai, F. C.</creatorcontrib><creatorcontrib>Zhang, K.</creatorcontrib><creatorcontrib>Huangfu, Y. Z.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Strength of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, X.</au><au>Liu, S.</au><au>Feng, Z. P.</au><au>Cai, F. C.</au><au>Zhang, K.</au><au>Huangfu, Y. Z.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study on the Calculation Method of Correlation Length of Power Spectral Density Function of Two-Phase Flow in Heat Transfer Tube of Steam Generator</atitle><jtitle>Strength of materials</jtitle><stitle>Strength Mater</stitle><date>2023</date><risdate>2023</risdate><volume>55</volume><issue>1</issue><spage>205</spage><epage>213</epage><pages>205-213</pages><issn>0039-2316</issn><eissn>1573-9325</eissn><abstract>In nuclear reactors, turbulent excitation is an essential mechanism of flow-induced vibration. Turbulence exists everywhere in the heat transfer tubes, fuel rods and valves. Among three main research methods for turbulence excitation, the first is the fluid-structure coupling method, which can fully consider the fluid structure coupling effect but has not yet obtained a strict mathematical solution. The second is to make reasonable assumptions and use the classical random vibration theory to calculate the vibration response of the structure. This method is simple and efficient, but it cannot consider the nonlinear factors such as clearance, collision and friction. Thirdly, the transient analysis method is used to calculate the vibration response of the structure. This method can consider nonlinear factors, and the difficulty is to obtain the time history of turbulent excitation force acting on the structure. This paper presents a calculation method of the correlation length of the power spectral density function of two-phase flow in the heat transfer tube of steam generator based on global optimization fitting, which can determine the correlation length of the power spectral density function of two-phase flow in the heat transfer tube of steam generator efficiently and conveniently. It provides necessary input for the time history of power spectral density to turbulent excitation forc, and lays a foundation for more accurate transient analysis method for random turbulent excitation vibration analysis, design improvement, and safety evaluation of tube bundle equipment.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11223-023-00514-7</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0039-2316
ispartof Strength of materials, 2023, Vol.55 (1), p.205-213
issn 0039-2316
1573-9325
language eng
recordid cdi_proquest_journals_2812752370
source SpringerLink Journals
subjects Analysis
Boilers
Characterization and Evaluation of Materials
Chemistry and Materials Science
Classical Mechanics
Coupling
Excitation
Flow generated vibrations
Fluid flow
Global optimization
Heat transfer
Materials Science
Mathematical analysis
Methods
Nuclear facilities
Nuclear fuel elements
Nuclear reactors
Nuclear safety
Power spectral density
Random vibration
Solid Mechanics
Specific gravity
Spectral density function
Transient analysis
Tubes
Turbulence
Turbulent flow
Two phase flow
Vibration analysis
Vibration response
title Study on the Calculation Method of Correlation Length of Power Spectral Density Function of Two-Phase Flow in Heat Transfer Tube of Steam Generator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A10%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20on%20the%20Calculation%20Method%20of%20Correlation%20Length%20of%20Power%20Spectral%20Density%20Function%20of%20Two-Phase%20Flow%20in%20Heat%20Transfer%20Tube%20of%20Steam%20Generator&rft.jtitle=Strength%20of%20materials&rft.au=Huang,%20X.&rft.date=2023&rft.volume=55&rft.issue=1&rft.spage=205&rft.epage=213&rft.pages=205-213&rft.issn=0039-2316&rft.eissn=1573-9325&rft_id=info:doi/10.1007/s11223-023-00514-7&rft_dat=%3Cgale_proqu%3EA748966416%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2812752370&rft_id=info:pmid/&rft_galeid=A748966416&rfr_iscdi=true