Study on the Calculation Method of Correlation Length of Power Spectral Density Function of Two-Phase Flow in Heat Transfer Tube of Steam Generator
In nuclear reactors, turbulent excitation is an essential mechanism of flow-induced vibration. Turbulence exists everywhere in the heat transfer tubes, fuel rods and valves. Among three main research methods for turbulence excitation, the first is the fluid-structure coupling method, which can fully...
Gespeichert in:
Veröffentlicht in: | Strength of materials 2023, Vol.55 (1), p.205-213 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 213 |
---|---|
container_issue | 1 |
container_start_page | 205 |
container_title | Strength of materials |
container_volume | 55 |
creator | Huang, X. Liu, S. Feng, Z. P. Cai, F. C. Zhang, K. Huangfu, Y. Z. |
description | In nuclear reactors, turbulent excitation is an essential mechanism of flow-induced vibration. Turbulence exists everywhere in the heat transfer tubes, fuel rods and valves. Among three main research methods for turbulence excitation, the first is the fluid-structure coupling method, which can fully consider the fluid structure coupling effect but has not yet obtained a strict mathematical solution. The second is to make reasonable assumptions and use the classical random vibration theory to calculate the vibration response of the structure. This method is simple and efficient, but it cannot consider the nonlinear factors such as clearance, collision and friction. Thirdly, the transient analysis method is used to calculate the vibration response of the structure. This method can consider nonlinear factors, and the difficulty is to obtain the time history of turbulent excitation force acting on the structure. This paper presents a calculation method of the correlation length of the power spectral density function of two-phase flow in the heat transfer tube of steam generator based on global optimization fitting, which can determine the correlation length of the power spectral density function of two-phase flow in the heat transfer tube of steam generator efficiently and conveniently. It provides necessary input for the time history of power spectral density to turbulent excitation forc, and lays a foundation for more accurate transient analysis method for random turbulent excitation vibration analysis, design improvement, and safety evaluation of tube bundle equipment. |
doi_str_mv | 10.1007/s11223-023-00514-7 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2812752370</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A748966416</galeid><sourcerecordid>A748966416</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-36d6671e2c426528a3094a32d7e6e11756a782293b15c91400806086ffb19fda3</originalsourceid><addsrcrecordid>eNp9kd9q2zAUh8VYYVm3F9iVYFe9cKc_tmRflrRpCykrTXYtFPkocXGkVJLJ8hx74clzYfSmiIPQj--TdDgIfaPkkhIif0RKGeMFGYtUtCzkBzSjleRFw1n1Ec0I4U3BOBWf0OcYnwkhNeX1DP1ZpaE9Ye9w2gGe694MvU5dPj9A2vkWe4vnPgR4TZfgtmk3po_-CAGvDmBS0D2-Bhe7dMKLwZl_ZEbWR1887nQEvOj9EXcO34FOeB20izbL62EDI7dKoPf4FhwEnXz4gs6s7iN8fd3P0a_FzXp-Vyx_3t7Pr5aF4SVPBRetEJICMyUTFas1J02pOWslCKBUVkLLmrGGb2hlGlrmlokgtbB2Qxvban6Ovk_3HoJ_GSAm9eyH4PKTitWUyYpxSTJ1OVFb3YPqnPW5X5NXC_vOeAe2y_mVLOtGiJKKLFy8ETKT4Hfa6iFGdb96esuyiTXBxxjAqkPo9jqcFCVqnKyaJqvIWONklcwSn6SYYbeF8P_f71h_AV9opH0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2812752370</pqid></control><display><type>article</type><title>Study on the Calculation Method of Correlation Length of Power Spectral Density Function of Two-Phase Flow in Heat Transfer Tube of Steam Generator</title><source>SpringerLink Journals</source><creator>Huang, X. ; Liu, S. ; Feng, Z. P. ; Cai, F. C. ; Zhang, K. ; Huangfu, Y. Z.</creator><creatorcontrib>Huang, X. ; Liu, S. ; Feng, Z. P. ; Cai, F. C. ; Zhang, K. ; Huangfu, Y. Z.</creatorcontrib><description>In nuclear reactors, turbulent excitation is an essential mechanism of flow-induced vibration. Turbulence exists everywhere in the heat transfer tubes, fuel rods and valves. Among three main research methods for turbulence excitation, the first is the fluid-structure coupling method, which can fully consider the fluid structure coupling effect but has not yet obtained a strict mathematical solution. The second is to make reasonable assumptions and use the classical random vibration theory to calculate the vibration response of the structure. This method is simple and efficient, but it cannot consider the nonlinear factors such as clearance, collision and friction. Thirdly, the transient analysis method is used to calculate the vibration response of the structure. This method can consider nonlinear factors, and the difficulty is to obtain the time history of turbulent excitation force acting on the structure. This paper presents a calculation method of the correlation length of the power spectral density function of two-phase flow in the heat transfer tube of steam generator based on global optimization fitting, which can determine the correlation length of the power spectral density function of two-phase flow in the heat transfer tube of steam generator efficiently and conveniently. It provides necessary input for the time history of power spectral density to turbulent excitation forc, and lays a foundation for more accurate transient analysis method for random turbulent excitation vibration analysis, design improvement, and safety evaluation of tube bundle equipment.</description><identifier>ISSN: 0039-2316</identifier><identifier>EISSN: 1573-9325</identifier><identifier>DOI: 10.1007/s11223-023-00514-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analysis ; Boilers ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Coupling ; Excitation ; Flow generated vibrations ; Fluid flow ; Global optimization ; Heat transfer ; Materials Science ; Mathematical analysis ; Methods ; Nuclear facilities ; Nuclear fuel elements ; Nuclear reactors ; Nuclear safety ; Power spectral density ; Random vibration ; Solid Mechanics ; Specific gravity ; Spectral density function ; Transient analysis ; Tubes ; Turbulence ; Turbulent flow ; Two phase flow ; Vibration analysis ; Vibration response</subject><ispartof>Strength of materials, 2023, Vol.55 (1), p.205-213</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c343t-36d6671e2c426528a3094a32d7e6e11756a782293b15c91400806086ffb19fda3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11223-023-00514-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11223-023-00514-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Huang, X.</creatorcontrib><creatorcontrib>Liu, S.</creatorcontrib><creatorcontrib>Feng, Z. P.</creatorcontrib><creatorcontrib>Cai, F. C.</creatorcontrib><creatorcontrib>Zhang, K.</creatorcontrib><creatorcontrib>Huangfu, Y. Z.</creatorcontrib><title>Study on the Calculation Method of Correlation Length of Power Spectral Density Function of Two-Phase Flow in Heat Transfer Tube of Steam Generator</title><title>Strength of materials</title><addtitle>Strength Mater</addtitle><description>In nuclear reactors, turbulent excitation is an essential mechanism of flow-induced vibration. Turbulence exists everywhere in the heat transfer tubes, fuel rods and valves. Among three main research methods for turbulence excitation, the first is the fluid-structure coupling method, which can fully consider the fluid structure coupling effect but has not yet obtained a strict mathematical solution. The second is to make reasonable assumptions and use the classical random vibration theory to calculate the vibration response of the structure. This method is simple and efficient, but it cannot consider the nonlinear factors such as clearance, collision and friction. Thirdly, the transient analysis method is used to calculate the vibration response of the structure. This method can consider nonlinear factors, and the difficulty is to obtain the time history of turbulent excitation force acting on the structure. This paper presents a calculation method of the correlation length of the power spectral density function of two-phase flow in the heat transfer tube of steam generator based on global optimization fitting, which can determine the correlation length of the power spectral density function of two-phase flow in the heat transfer tube of steam generator efficiently and conveniently. It provides necessary input for the time history of power spectral density to turbulent excitation forc, and lays a foundation for more accurate transient analysis method for random turbulent excitation vibration analysis, design improvement, and safety evaluation of tube bundle equipment.</description><subject>Analysis</subject><subject>Boilers</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Coupling</subject><subject>Excitation</subject><subject>Flow generated vibrations</subject><subject>Fluid flow</subject><subject>Global optimization</subject><subject>Heat transfer</subject><subject>Materials Science</subject><subject>Mathematical analysis</subject><subject>Methods</subject><subject>Nuclear facilities</subject><subject>Nuclear fuel elements</subject><subject>Nuclear reactors</subject><subject>Nuclear safety</subject><subject>Power spectral density</subject><subject>Random vibration</subject><subject>Solid Mechanics</subject><subject>Specific gravity</subject><subject>Spectral density function</subject><subject>Transient analysis</subject><subject>Tubes</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><subject>Two phase flow</subject><subject>Vibration analysis</subject><subject>Vibration response</subject><issn>0039-2316</issn><issn>1573-9325</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kd9q2zAUh8VYYVm3F9iVYFe9cKc_tmRflrRpCykrTXYtFPkocXGkVJLJ8hx74clzYfSmiIPQj--TdDgIfaPkkhIif0RKGeMFGYtUtCzkBzSjleRFw1n1Ec0I4U3BOBWf0OcYnwkhNeX1DP1ZpaE9Ye9w2gGe694MvU5dPj9A2vkWe4vnPgR4TZfgtmk3po_-CAGvDmBS0D2-Bhe7dMKLwZl_ZEbWR1887nQEvOj9EXcO34FOeB20izbL62EDI7dKoPf4FhwEnXz4gs6s7iN8fd3P0a_FzXp-Vyx_3t7Pr5aF4SVPBRetEJICMyUTFas1J02pOWslCKBUVkLLmrGGb2hlGlrmlokgtbB2Qxvban6Ovk_3HoJ_GSAm9eyH4PKTitWUyYpxSTJ1OVFb3YPqnPW5X5NXC_vOeAe2y_mVLOtGiJKKLFy8ETKT4Hfa6iFGdb96esuyiTXBxxjAqkPo9jqcFCVqnKyaJqvIWONklcwSn6SYYbeF8P_f71h_AV9opH0</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Huang, X.</creator><creator>Liu, S.</creator><creator>Feng, Z. P.</creator><creator>Cai, F. C.</creator><creator>Zhang, K.</creator><creator>Huangfu, Y. Z.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>2023</creationdate><title>Study on the Calculation Method of Correlation Length of Power Spectral Density Function of Two-Phase Flow in Heat Transfer Tube of Steam Generator</title><author>Huang, X. ; Liu, S. ; Feng, Z. P. ; Cai, F. C. ; Zhang, K. ; Huangfu, Y. Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-36d6671e2c426528a3094a32d7e6e11756a782293b15c91400806086ffb19fda3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Boilers</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Coupling</topic><topic>Excitation</topic><topic>Flow generated vibrations</topic><topic>Fluid flow</topic><topic>Global optimization</topic><topic>Heat transfer</topic><topic>Materials Science</topic><topic>Mathematical analysis</topic><topic>Methods</topic><topic>Nuclear facilities</topic><topic>Nuclear fuel elements</topic><topic>Nuclear reactors</topic><topic>Nuclear safety</topic><topic>Power spectral density</topic><topic>Random vibration</topic><topic>Solid Mechanics</topic><topic>Specific gravity</topic><topic>Spectral density function</topic><topic>Transient analysis</topic><topic>Tubes</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><topic>Two phase flow</topic><topic>Vibration analysis</topic><topic>Vibration response</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, X.</creatorcontrib><creatorcontrib>Liu, S.</creatorcontrib><creatorcontrib>Feng, Z. P.</creatorcontrib><creatorcontrib>Cai, F. C.</creatorcontrib><creatorcontrib>Zhang, K.</creatorcontrib><creatorcontrib>Huangfu, Y. Z.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Strength of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, X.</au><au>Liu, S.</au><au>Feng, Z. P.</au><au>Cai, F. C.</au><au>Zhang, K.</au><au>Huangfu, Y. Z.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study on the Calculation Method of Correlation Length of Power Spectral Density Function of Two-Phase Flow in Heat Transfer Tube of Steam Generator</atitle><jtitle>Strength of materials</jtitle><stitle>Strength Mater</stitle><date>2023</date><risdate>2023</risdate><volume>55</volume><issue>1</issue><spage>205</spage><epage>213</epage><pages>205-213</pages><issn>0039-2316</issn><eissn>1573-9325</eissn><abstract>In nuclear reactors, turbulent excitation is an essential mechanism of flow-induced vibration. Turbulence exists everywhere in the heat transfer tubes, fuel rods and valves. Among three main research methods for turbulence excitation, the first is the fluid-structure coupling method, which can fully consider the fluid structure coupling effect but has not yet obtained a strict mathematical solution. The second is to make reasonable assumptions and use the classical random vibration theory to calculate the vibration response of the structure. This method is simple and efficient, but it cannot consider the nonlinear factors such as clearance, collision and friction. Thirdly, the transient analysis method is used to calculate the vibration response of the structure. This method can consider nonlinear factors, and the difficulty is to obtain the time history of turbulent excitation force acting on the structure. This paper presents a calculation method of the correlation length of the power spectral density function of two-phase flow in the heat transfer tube of steam generator based on global optimization fitting, which can determine the correlation length of the power spectral density function of two-phase flow in the heat transfer tube of steam generator efficiently and conveniently. It provides necessary input for the time history of power spectral density to turbulent excitation forc, and lays a foundation for more accurate transient analysis method for random turbulent excitation vibration analysis, design improvement, and safety evaluation of tube bundle equipment.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11223-023-00514-7</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0039-2316 |
ispartof | Strength of materials, 2023, Vol.55 (1), p.205-213 |
issn | 0039-2316 1573-9325 |
language | eng |
recordid | cdi_proquest_journals_2812752370 |
source | SpringerLink Journals |
subjects | Analysis Boilers Characterization and Evaluation of Materials Chemistry and Materials Science Classical Mechanics Coupling Excitation Flow generated vibrations Fluid flow Global optimization Heat transfer Materials Science Mathematical analysis Methods Nuclear facilities Nuclear fuel elements Nuclear reactors Nuclear safety Power spectral density Random vibration Solid Mechanics Specific gravity Spectral density function Transient analysis Tubes Turbulence Turbulent flow Two phase flow Vibration analysis Vibration response |
title | Study on the Calculation Method of Correlation Length of Power Spectral Density Function of Two-Phase Flow in Heat Transfer Tube of Steam Generator |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A10%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20on%20the%20Calculation%20Method%20of%20Correlation%20Length%20of%20Power%20Spectral%20Density%20Function%20of%20Two-Phase%20Flow%20in%20Heat%20Transfer%20Tube%20of%20Steam%20Generator&rft.jtitle=Strength%20of%20materials&rft.au=Huang,%20X.&rft.date=2023&rft.volume=55&rft.issue=1&rft.spage=205&rft.epage=213&rft.pages=205-213&rft.issn=0039-2316&rft.eissn=1573-9325&rft_id=info:doi/10.1007/s11223-023-00514-7&rft_dat=%3Cgale_proqu%3EA748966416%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2812752370&rft_id=info:pmid/&rft_galeid=A748966416&rfr_iscdi=true |