Lack of superstable trajectories in linear viscoelasticity: a numerical approach
Given a positive operator A on some Hilbert space, and a nonnegative decreasing summable function μ , we consider the abstract equation with memory u ¨ ( t ) + A u ( t ) - ∫ 0 t μ ( s ) A u ( t - s ) d s = 0 modeling the dynamics of linearly viscoelastic solids. The purpose of this work is to provid...
Gespeichert in:
Veröffentlicht in: | Numerische Mathematik 2023-04, Vol.153 (4), p.611-633 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given a positive operator
A
on some Hilbert space, and a nonnegative decreasing summable function
μ
, we consider the abstract equation with memory
u
¨
(
t
)
+
A
u
(
t
)
-
∫
0
t
μ
(
s
)
A
u
(
t
-
s
)
d
s
=
0
modeling the dynamics of linearly viscoelastic solids. The purpose of this work is to provide numerical evidence of the fact that the energy
E
(
t
)
=
(
1
-
∫
0
t
μ
(
s
)
d
s
)
‖
u
(
t
)
‖
1
2
+
‖
u
˙
(
t
)
‖
2
+
∫
0
t
μ
(
s
)
‖
u
(
t
)
-
u
(
t
-
s
)
‖
1
2
d
s
of any nontrivial solution cannot decay faster than exponential, no matter how fast might be the decay of the memory kernel
μ
. This will be accomplished by simulating the integro-differential equation for different choices of the memory kernel
μ
and of the initial data. |
---|---|
ISSN: | 0029-599X 0945-3245 |
DOI: | 10.1007/s00211-023-01351-1 |