Lack of superstable trajectories in linear viscoelasticity: a numerical approach

Given a positive operator A on some Hilbert space, and a nonnegative decreasing summable function μ , we consider the abstract equation with memory u ¨ ( t ) + A u ( t ) - ∫ 0 t μ ( s ) A u ( t - s ) d s = 0 modeling the dynamics of linearly viscoelastic solids. The purpose of this work is to provid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerische Mathematik 2023-04, Vol.153 (4), p.611-633
Hauptverfasser: Antonietti, Paola F., Liverani, Lorenzo, Pata, Vittorino
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given a positive operator A on some Hilbert space, and a nonnegative decreasing summable function μ , we consider the abstract equation with memory u ¨ ( t ) + A u ( t ) - ∫ 0 t μ ( s ) A u ( t - s ) d s = 0 modeling the dynamics of linearly viscoelastic solids. The purpose of this work is to provide numerical evidence of the fact that the energy E ( t ) = ( 1 - ∫ 0 t μ ( s ) d s ) ‖ u ( t ) ‖ 1 2 + ‖ u ˙ ( t ) ‖ 2 + ∫ 0 t μ ( s ) ‖ u ( t ) - u ( t - s ) ‖ 1 2 d s of any nontrivial solution cannot decay faster than exponential, no matter how fast might be the decay of the memory kernel μ . This will be accomplished by simulating the integro-differential equation for different choices of the memory kernel μ and of the initial data.
ISSN:0029-599X
0945-3245
DOI:10.1007/s00211-023-01351-1