Offshore Drilling Information Model Retrieval Method Based on Improved Campaign Algorithm
Dong, J. and Guan, G., 2020. Offshore drilling information model retrieval method based on improved campaign algorithm. In: Malvárez, G. and Navas, F. (eds.), Global Coastal Issues of 2020. Journal of Coastal Research, Special Issue No. 95, pp. 1072-1077. Coconut Creek (Florida), ISSN 0749-0208. The...
Gespeichert in:
Veröffentlicht in: | Journal of coastal research 2020-05, Vol.95 (sp1), p.1072-1077 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1077 |
---|---|
container_issue | sp1 |
container_start_page | 1072 |
container_title | Journal of coastal research |
container_volume | 95 |
creator | Dong, Jiacheng Guan, Gang |
description | Dong, J. and Guan, G., 2020. Offshore drilling information model retrieval method based on improved campaign algorithm. In: Malvárez, G. and Navas, F. (eds.), Global Coastal Issues of 2020. Journal of Coastal Research, Special Issue No. 95, pp. 1072-1077. Coconut Creek (Florida), ISSN 0749-0208. The offshore drilling information model is complex and diverse, and traditional methods are difficult to accurately and efficiently search. In order to improve the retrieval performance of ARCHI, an offshore drilling information model retrieval method based on improved campaign algorithm is proposed. In the computing architecture information model, the associated data stream information is concentrated on the fuzzy clustering center of the multi-layer space, and the training set is associated with the class to which it belongs. Finally, the optimization is completed. The simulation results show that the proposed algorithm has higher performance in accessing and retrieving associated data when establishing offshore drilling information model. It is superior to traditional model in accurate retrieval and offshore drilling, and has good application value. |
doi_str_mv | 10.2112/SI95-209.1 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2812499433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>48748857</jstor_id><sourcerecordid>48748857</sourcerecordid><originalsourceid>FETCH-LOGICAL-b314t-48f1b8791a80a0ec9bf8ce2f883c320ad2c88ff8ea8f4c06ecca93e67bff613c3</originalsourceid><addsrcrecordid>eNp9kM1LwzAYh4MoOKcX70LAiwidSZq2yXHOr8LGwI-Dp5CmyZbRNjPpBv73ZlQ8enpf-D383pcHgEuMJgRjcvdW8iwhiE_wERjhLMNJhtL8GIxQQXmCCGKn4CyEDUI4Z7QYgc-lMWHtvIYP3jaN7Vaw7Izzreyt6-DC1bqBr7r3Vu9lAxe6X7sa3sugaxjzst16t4_7TLZbaVcdnDYr522_bs_BiZFN0Be_cww-nh7fZy_JfPlczqbzpEox7RPKDK5YwbFkSCKteGWY0sQwlqqUIFkTxZgxTEtmqEK5VkryVOdFZUyOIzMG10Nv_ORrp0MvNm7nu3hSEIYJ5ZymaaRuB0p5F4LXRmy9baX_FhiJgzpxUCeiOoEjfDXAm9A7_0dSVlDGsiLmN0NeWec6_V_VD9fWeCA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2812499433</pqid></control><display><type>article</type><title>Offshore Drilling Information Model Retrieval Method Based on Improved Campaign Algorithm</title><source>JSTOR Archive Collection A-Z Listing</source><creator>Dong, Jiacheng ; Guan, Gang</creator><creatorcontrib>Dong, Jiacheng ; Guan, Gang</creatorcontrib><description>Dong, J. and Guan, G., 2020. Offshore drilling information model retrieval method based on improved campaign algorithm. In: Malvárez, G. and Navas, F. (eds.), Global Coastal Issues of 2020. Journal of Coastal Research, Special Issue No. 95, pp. 1072-1077. Coconut Creek (Florida), ISSN 0749-0208. The offshore drilling information model is complex and diverse, and traditional methods are difficult to accurately and efficiently search. In order to improve the retrieval performance of ARCHI, an offshore drilling information model retrieval method based on improved campaign algorithm is proposed. In the computing architecture information model, the associated data stream information is concentrated on the fuzzy clustering center of the multi-layer space, and the training set is associated with the class to which it belongs. Finally, the optimization is completed. The simulation results show that the proposed algorithm has higher performance in accessing and retrieving associated data when establishing offshore drilling information model. It is superior to traditional model in accurate retrieval and offshore drilling, and has good application value.</description><identifier>ISSN: 0749-0208</identifier><identifier>EISSN: 1551-5036</identifier><identifier>DOI: 10.2112/SI95-209.1</identifier><language>eng</language><publisher>Fort Lauderdale: Coastal Education and Research Foundation</publisher><subject>Algorithms ; association data ; Campaign algorithm ; Clustering ; Coastal inlets ; Coastal research ; Data transmission ; Drilling ; Information retrieval ; METHODOLOGIES ; Methods ; Multilayers ; Offshore ; Offshore drilling ; Optimization ; retrieval ; the offshore drilling information model</subject><ispartof>Journal of coastal research, 2020-05, Vol.95 (sp1), p.1072-1077</ispartof><rights>Coastal Education and Research Foundation, Inc. 2020</rights><rights>Copyright Allen Press Inc. Spring 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b314t-48f1b8791a80a0ec9bf8ce2f883c320ad2c88ff8ea8f4c06ecca93e67bff613c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/48748857$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/48748857$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27923,27924,58016,58249</link.rule.ids></links><search><creatorcontrib>Dong, Jiacheng</creatorcontrib><creatorcontrib>Guan, Gang</creatorcontrib><title>Offshore Drilling Information Model Retrieval Method Based on Improved Campaign Algorithm</title><title>Journal of coastal research</title><description>Dong, J. and Guan, G., 2020. Offshore drilling information model retrieval method based on improved campaign algorithm. In: Malvárez, G. and Navas, F. (eds.), Global Coastal Issues of 2020. Journal of Coastal Research, Special Issue No. 95, pp. 1072-1077. Coconut Creek (Florida), ISSN 0749-0208. The offshore drilling information model is complex and diverse, and traditional methods are difficult to accurately and efficiently search. In order to improve the retrieval performance of ARCHI, an offshore drilling information model retrieval method based on improved campaign algorithm is proposed. In the computing architecture information model, the associated data stream information is concentrated on the fuzzy clustering center of the multi-layer space, and the training set is associated with the class to which it belongs. Finally, the optimization is completed. The simulation results show that the proposed algorithm has higher performance in accessing and retrieving associated data when establishing offshore drilling information model. It is superior to traditional model in accurate retrieval and offshore drilling, and has good application value.</description><subject>Algorithms</subject><subject>association data</subject><subject>Campaign algorithm</subject><subject>Clustering</subject><subject>Coastal inlets</subject><subject>Coastal research</subject><subject>Data transmission</subject><subject>Drilling</subject><subject>Information retrieval</subject><subject>METHODOLOGIES</subject><subject>Methods</subject><subject>Multilayers</subject><subject>Offshore</subject><subject>Offshore drilling</subject><subject>Optimization</subject><subject>retrieval</subject><subject>the offshore drilling information model</subject><issn>0749-0208</issn><issn>1551-5036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kM1LwzAYh4MoOKcX70LAiwidSZq2yXHOr8LGwI-Dp5CmyZbRNjPpBv73ZlQ8enpf-D383pcHgEuMJgRjcvdW8iwhiE_wERjhLMNJhtL8GIxQQXmCCGKn4CyEDUI4Z7QYgc-lMWHtvIYP3jaN7Vaw7Izzreyt6-DC1bqBr7r3Vu9lAxe6X7sa3sugaxjzst16t4_7TLZbaVcdnDYr522_bs_BiZFN0Be_cww-nh7fZy_JfPlczqbzpEox7RPKDK5YwbFkSCKteGWY0sQwlqqUIFkTxZgxTEtmqEK5VkryVOdFZUyOIzMG10Nv_ORrp0MvNm7nu3hSEIYJ5ZymaaRuB0p5F4LXRmy9baX_FhiJgzpxUCeiOoEjfDXAm9A7_0dSVlDGsiLmN0NeWec6_V_VD9fWeCA</recordid><startdate>20200526</startdate><enddate>20200526</enddate><creator>Dong, Jiacheng</creator><creator>Guan, Gang</creator><general>Coastal Education and Research Foundation</general><general>Allen Press Publishing</general><general>Allen Press Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TN</scope><scope>7U5</scope><scope>7U9</scope><scope>7XB</scope><scope>88I</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M2P</scope><scope>M7N</scope><scope>M7S</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20200526</creationdate><title>Offshore Drilling Information Model Retrieval Method Based on Improved Campaign Algorithm</title><author>Dong, Jiacheng ; Guan, Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b314t-48f1b8791a80a0ec9bf8ce2f883c320ad2c88ff8ea8f4c06ecca93e67bff613c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>association data</topic><topic>Campaign algorithm</topic><topic>Clustering</topic><topic>Coastal inlets</topic><topic>Coastal research</topic><topic>Data transmission</topic><topic>Drilling</topic><topic>Information retrieval</topic><topic>METHODOLOGIES</topic><topic>Methods</topic><topic>Multilayers</topic><topic>Offshore</topic><topic>Offshore drilling</topic><topic>Optimization</topic><topic>retrieval</topic><topic>the offshore drilling information model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Jiacheng</creatorcontrib><creatorcontrib>Guan, Gang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of coastal research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Jiacheng</au><au>Guan, Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Offshore Drilling Information Model Retrieval Method Based on Improved Campaign Algorithm</atitle><jtitle>Journal of coastal research</jtitle><date>2020-05-26</date><risdate>2020</risdate><volume>95</volume><issue>sp1</issue><spage>1072</spage><epage>1077</epage><pages>1072-1077</pages><issn>0749-0208</issn><eissn>1551-5036</eissn><abstract>Dong, J. and Guan, G., 2020. Offshore drilling information model retrieval method based on improved campaign algorithm. In: Malvárez, G. and Navas, F. (eds.), Global Coastal Issues of 2020. Journal of Coastal Research, Special Issue No. 95, pp. 1072-1077. Coconut Creek (Florida), ISSN 0749-0208. The offshore drilling information model is complex and diverse, and traditional methods are difficult to accurately and efficiently search. In order to improve the retrieval performance of ARCHI, an offshore drilling information model retrieval method based on improved campaign algorithm is proposed. In the computing architecture information model, the associated data stream information is concentrated on the fuzzy clustering center of the multi-layer space, and the training set is associated with the class to which it belongs. Finally, the optimization is completed. The simulation results show that the proposed algorithm has higher performance in accessing and retrieving associated data when establishing offshore drilling information model. It is superior to traditional model in accurate retrieval and offshore drilling, and has good application value.</abstract><cop>Fort Lauderdale</cop><pub>Coastal Education and Research Foundation</pub><doi>10.2112/SI95-209.1</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0749-0208 |
ispartof | Journal of coastal research, 2020-05, Vol.95 (sp1), p.1072-1077 |
issn | 0749-0208 1551-5036 |
language | eng |
recordid | cdi_proquest_journals_2812499433 |
source | JSTOR Archive Collection A-Z Listing |
subjects | Algorithms association data Campaign algorithm Clustering Coastal inlets Coastal research Data transmission Drilling Information retrieval METHODOLOGIES Methods Multilayers Offshore Offshore drilling Optimization retrieval the offshore drilling information model |
title | Offshore Drilling Information Model Retrieval Method Based on Improved Campaign Algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T14%3A52%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Offshore%20Drilling%20Information%20Model%20Retrieval%20Method%20Based%20on%20Improved%20Campaign%20Algorithm&rft.jtitle=Journal%20of%20coastal%20research&rft.au=Dong,%20Jiacheng&rft.date=2020-05-26&rft.volume=95&rft.issue=sp1&rft.spage=1072&rft.epage=1077&rft.pages=1072-1077&rft.issn=0749-0208&rft.eissn=1551-5036&rft_id=info:doi/10.2112/SI95-209.1&rft_dat=%3Cjstor_proqu%3E48748857%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2812499433&rft_id=info:pmid/&rft_jstor_id=48748857&rfr_iscdi=true |