AAJS: An Anti-Malicious Attack Graphic Similarity Judgment System in Cloud Computing Environments

With the rapid development of cloud computing and other modern technologies, collaborative computing between data is increasing, and privacy protection and secure multi-party computation are also attracting more attention. The emergence of cloud computing provides new options for data holders to per...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2023-04, Vol.12 (9), p.1983
Hauptverfasser: Liu, Xin, Liu, Xiaomeng, Xiong, Neal, Luo, Dan, Xu, Gang, Chen, Xiubo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page 1983
container_title Electronics (Basel)
container_volume 12
creator Liu, Xin
Liu, Xiaomeng
Xiong, Neal
Luo, Dan
Xu, Gang
Chen, Xiubo
description With the rapid development of cloud computing and other modern technologies, collaborative computing between data is increasing, and privacy protection and secure multi-party computation are also attracting more attention. The emergence of cloud computing provides new options for data holders to perform complex computing problems and to store images; however, data privacy issues cannot be ignored. If a graphic is encrypted and stored in the cloud, the cloud server will perform confidential similar matching when the user searches. At present, most research on searchable encryption is focused on text search, with few schemes researched on how to finish the graphic search. To solve this problem, this paper proposes a secure search protocol based on graph shape under the semi-honest model. Using the cut-choose method and zero-knowledge proof, further designs of the anti-malicious attack graphic similarity judgment system (AAJS) based on the Paillier encryption algorithm, can achieve the secure search and matching of the graph while resisting malicious adversary attacks. The proposed protocol’s security is proved by the real/ideal model paradigm. This paper conducts performance analysis and experimental simulation on the existing scheme and the experiments demonstrate that the system achieves high execution efficiency.
doi_str_mv 10.3390/electronics12091983
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2812387104</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2812387104</sourcerecordid><originalsourceid>FETCH-LOGICAL-c272t-240688040d2512624f5a982033d2e7f53748dd46b11d4cbd8bb7f272826975693</originalsourceid><addsrcrecordid>eNptkE1LAzEQhoMoWGp_gZeA59Vksh-Jt2WpraXioXpeskm2pu6XSVbov3dLPXhwGJg5PO-8w4vQLSX3jAnyYBqjgus7qzwFIqjg7ALNgGQiEiDg8s9-jRbeH8hUgjLOyAzJPN_sHnHeTR1s9CIbq2w_epyHINUnXjk5fFiFd7a1jXQ2HPFm1PvWdAHvjj6YFtsOF00_alz07TAG2-3xsvu200cnyt-gq1o23ix-5xy9Py3finW0fV09F_k2UpBBiCAmKeckJhoSCinEdSIFB8KYBpPVCctirnWcVpTqWFWaV1VWT0oOqciSVLA5ujvfHVz_NRofykM_um6yLIFTYDyjJJ4odqaU6713pi4HZ1vpjiUl5SnO8p842Q-JZGoC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2812387104</pqid></control><display><type>article</type><title>AAJS: An Anti-Malicious Attack Graphic Similarity Judgment System in Cloud Computing Environments</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Liu, Xin ; Liu, Xiaomeng ; Xiong, Neal ; Luo, Dan ; Xu, Gang ; Chen, Xiubo</creator><creatorcontrib>Liu, Xin ; Liu, Xiaomeng ; Xiong, Neal ; Luo, Dan ; Xu, Gang ; Chen, Xiubo</creatorcontrib><description>With the rapid development of cloud computing and other modern technologies, collaborative computing between data is increasing, and privacy protection and secure multi-party computation are also attracting more attention. The emergence of cloud computing provides new options for data holders to perform complex computing problems and to store images; however, data privacy issues cannot be ignored. If a graphic is encrypted and stored in the cloud, the cloud server will perform confidential similar matching when the user searches. At present, most research on searchable encryption is focused on text search, with few schemes researched on how to finish the graphic search. To solve this problem, this paper proposes a secure search protocol based on graph shape under the semi-honest model. Using the cut-choose method and zero-knowledge proof, further designs of the anti-malicious attack graphic similarity judgment system (AAJS) based on the Paillier encryption algorithm, can achieve the secure search and matching of the graph while resisting malicious adversary attacks. The proposed protocol’s security is proved by the real/ideal model paradigm. This paper conducts performance analysis and experimental simulation on the existing scheme and the experiments demonstrate that the system achieves high execution efficiency.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics12091983</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Cloud computing ; Design ; Disclosure ; Encryption ; Image retrieval ; Information processing ; Matching ; Privacy ; Protocol ; Search engines ; Searching ; Similarity</subject><ispartof>Electronics (Basel), 2023-04, Vol.12 (9), p.1983</ispartof><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c272t-240688040d2512624f5a982033d2e7f53748dd46b11d4cbd8bb7f272826975693</cites><orcidid>0000-0002-3450-3808 ; 0000-0002-0394-4635</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Liu, Xin</creatorcontrib><creatorcontrib>Liu, Xiaomeng</creatorcontrib><creatorcontrib>Xiong, Neal</creatorcontrib><creatorcontrib>Luo, Dan</creatorcontrib><creatorcontrib>Xu, Gang</creatorcontrib><creatorcontrib>Chen, Xiubo</creatorcontrib><title>AAJS: An Anti-Malicious Attack Graphic Similarity Judgment System in Cloud Computing Environments</title><title>Electronics (Basel)</title><description>With the rapid development of cloud computing and other modern technologies, collaborative computing between data is increasing, and privacy protection and secure multi-party computation are also attracting more attention. The emergence of cloud computing provides new options for data holders to perform complex computing problems and to store images; however, data privacy issues cannot be ignored. If a graphic is encrypted and stored in the cloud, the cloud server will perform confidential similar matching when the user searches. At present, most research on searchable encryption is focused on text search, with few schemes researched on how to finish the graphic search. To solve this problem, this paper proposes a secure search protocol based on graph shape under the semi-honest model. Using the cut-choose method and zero-knowledge proof, further designs of the anti-malicious attack graphic similarity judgment system (AAJS) based on the Paillier encryption algorithm, can achieve the secure search and matching of the graph while resisting malicious adversary attacks. The proposed protocol’s security is proved by the real/ideal model paradigm. This paper conducts performance analysis and experimental simulation on the existing scheme and the experiments demonstrate that the system achieves high execution efficiency.</description><subject>Algorithms</subject><subject>Cloud computing</subject><subject>Design</subject><subject>Disclosure</subject><subject>Encryption</subject><subject>Image retrieval</subject><subject>Information processing</subject><subject>Matching</subject><subject>Privacy</subject><subject>Protocol</subject><subject>Search engines</subject><subject>Searching</subject><subject>Similarity</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNptkE1LAzEQhoMoWGp_gZeA59Vksh-Jt2WpraXioXpeskm2pu6XSVbov3dLPXhwGJg5PO-8w4vQLSX3jAnyYBqjgus7qzwFIqjg7ALNgGQiEiDg8s9-jRbeH8hUgjLOyAzJPN_sHnHeTR1s9CIbq2w_epyHINUnXjk5fFiFd7a1jXQ2HPFm1PvWdAHvjj6YFtsOF00_alz07TAG2-3xsvu200cnyt-gq1o23ix-5xy9Py3finW0fV09F_k2UpBBiCAmKeckJhoSCinEdSIFB8KYBpPVCctirnWcVpTqWFWaV1VWT0oOqciSVLA5ujvfHVz_NRofykM_um6yLIFTYDyjJJ4odqaU6713pi4HZ1vpjiUl5SnO8p842Q-JZGoC</recordid><startdate>20230424</startdate><enddate>20230424</enddate><creator>Liu, Xin</creator><creator>Liu, Xiaomeng</creator><creator>Xiong, Neal</creator><creator>Luo, Dan</creator><creator>Xu, Gang</creator><creator>Chen, Xiubo</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-3450-3808</orcidid><orcidid>https://orcid.org/0000-0002-0394-4635</orcidid></search><sort><creationdate>20230424</creationdate><title>AAJS: An Anti-Malicious Attack Graphic Similarity Judgment System in Cloud Computing Environments</title><author>Liu, Xin ; Liu, Xiaomeng ; Xiong, Neal ; Luo, Dan ; Xu, Gang ; Chen, Xiubo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c272t-240688040d2512624f5a982033d2e7f53748dd46b11d4cbd8bb7f272826975693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Cloud computing</topic><topic>Design</topic><topic>Disclosure</topic><topic>Encryption</topic><topic>Image retrieval</topic><topic>Information processing</topic><topic>Matching</topic><topic>Privacy</topic><topic>Protocol</topic><topic>Search engines</topic><topic>Searching</topic><topic>Similarity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xin</creatorcontrib><creatorcontrib>Liu, Xiaomeng</creatorcontrib><creatorcontrib>Xiong, Neal</creatorcontrib><creatorcontrib>Luo, Dan</creatorcontrib><creatorcontrib>Xu, Gang</creatorcontrib><creatorcontrib>Chen, Xiubo</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Xin</au><au>Liu, Xiaomeng</au><au>Xiong, Neal</au><au>Luo, Dan</au><au>Xu, Gang</au><au>Chen, Xiubo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AAJS: An Anti-Malicious Attack Graphic Similarity Judgment System in Cloud Computing Environments</atitle><jtitle>Electronics (Basel)</jtitle><date>2023-04-24</date><risdate>2023</risdate><volume>12</volume><issue>9</issue><spage>1983</spage><pages>1983-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>With the rapid development of cloud computing and other modern technologies, collaborative computing between data is increasing, and privacy protection and secure multi-party computation are also attracting more attention. The emergence of cloud computing provides new options for data holders to perform complex computing problems and to store images; however, data privacy issues cannot be ignored. If a graphic is encrypted and stored in the cloud, the cloud server will perform confidential similar matching when the user searches. At present, most research on searchable encryption is focused on text search, with few schemes researched on how to finish the graphic search. To solve this problem, this paper proposes a secure search protocol based on graph shape under the semi-honest model. Using the cut-choose method and zero-knowledge proof, further designs of the anti-malicious attack graphic similarity judgment system (AAJS) based on the Paillier encryption algorithm, can achieve the secure search and matching of the graph while resisting malicious adversary attacks. The proposed protocol’s security is proved by the real/ideal model paradigm. This paper conducts performance analysis and experimental simulation on the existing scheme and the experiments demonstrate that the system achieves high execution efficiency.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics12091983</doi><orcidid>https://orcid.org/0000-0002-3450-3808</orcidid><orcidid>https://orcid.org/0000-0002-0394-4635</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-9292
ispartof Electronics (Basel), 2023-04, Vol.12 (9), p.1983
issn 2079-9292
2079-9292
language eng
recordid cdi_proquest_journals_2812387104
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Cloud computing
Design
Disclosure
Encryption
Image retrieval
Information processing
Matching
Privacy
Protocol
Search engines
Searching
Similarity
title AAJS: An Anti-Malicious Attack Graphic Similarity Judgment System in Cloud Computing Environments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T16%3A19%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AAJS:%20An%20Anti-Malicious%20Attack%20Graphic%20Similarity%20Judgment%20System%20in%20Cloud%20Computing%20Environments&rft.jtitle=Electronics%20(Basel)&rft.au=Liu,%20Xin&rft.date=2023-04-24&rft.volume=12&rft.issue=9&rft.spage=1983&rft.pages=1983-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics12091983&rft_dat=%3Cproquest_cross%3E2812387104%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2812387104&rft_id=info:pmid/&rfr_iscdi=true