AAJS: An Anti-Malicious Attack Graphic Similarity Judgment System in Cloud Computing Environments
With the rapid development of cloud computing and other modern technologies, collaborative computing between data is increasing, and privacy protection and secure multi-party computation are also attracting more attention. The emergence of cloud computing provides new options for data holders to per...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2023-04, Vol.12 (9), p.1983 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | 1983 |
container_title | Electronics (Basel) |
container_volume | 12 |
creator | Liu, Xin Liu, Xiaomeng Xiong, Neal Luo, Dan Xu, Gang Chen, Xiubo |
description | With the rapid development of cloud computing and other modern technologies, collaborative computing between data is increasing, and privacy protection and secure multi-party computation are also attracting more attention. The emergence of cloud computing provides new options for data holders to perform complex computing problems and to store images; however, data privacy issues cannot be ignored. If a graphic is encrypted and stored in the cloud, the cloud server will perform confidential similar matching when the user searches. At present, most research on searchable encryption is focused on text search, with few schemes researched on how to finish the graphic search. To solve this problem, this paper proposes a secure search protocol based on graph shape under the semi-honest model. Using the cut-choose method and zero-knowledge proof, further designs of the anti-malicious attack graphic similarity judgment system (AAJS) based on the Paillier encryption algorithm, can achieve the secure search and matching of the graph while resisting malicious adversary attacks. The proposed protocol’s security is proved by the real/ideal model paradigm. This paper conducts performance analysis and experimental simulation on the existing scheme and the experiments demonstrate that the system achieves high execution efficiency. |
doi_str_mv | 10.3390/electronics12091983 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2812387104</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2812387104</sourcerecordid><originalsourceid>FETCH-LOGICAL-c272t-240688040d2512624f5a982033d2e7f53748dd46b11d4cbd8bb7f272826975693</originalsourceid><addsrcrecordid>eNptkE1LAzEQhoMoWGp_gZeA59Vksh-Jt2WpraXioXpeskm2pu6XSVbov3dLPXhwGJg5PO-8w4vQLSX3jAnyYBqjgus7qzwFIqjg7ALNgGQiEiDg8s9-jRbeH8hUgjLOyAzJPN_sHnHeTR1s9CIbq2w_epyHINUnXjk5fFiFd7a1jXQ2HPFm1PvWdAHvjj6YFtsOF00_alz07TAG2-3xsvu200cnyt-gq1o23ix-5xy9Py3finW0fV09F_k2UpBBiCAmKeckJhoSCinEdSIFB8KYBpPVCctirnWcVpTqWFWaV1VWT0oOqciSVLA5ujvfHVz_NRofykM_um6yLIFTYDyjJJ4odqaU6713pi4HZ1vpjiUl5SnO8p842Q-JZGoC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2812387104</pqid></control><display><type>article</type><title>AAJS: An Anti-Malicious Attack Graphic Similarity Judgment System in Cloud Computing Environments</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Liu, Xin ; Liu, Xiaomeng ; Xiong, Neal ; Luo, Dan ; Xu, Gang ; Chen, Xiubo</creator><creatorcontrib>Liu, Xin ; Liu, Xiaomeng ; Xiong, Neal ; Luo, Dan ; Xu, Gang ; Chen, Xiubo</creatorcontrib><description>With the rapid development of cloud computing and other modern technologies, collaborative computing between data is increasing, and privacy protection and secure multi-party computation are also attracting more attention. The emergence of cloud computing provides new options for data holders to perform complex computing problems and to store images; however, data privacy issues cannot be ignored. If a graphic is encrypted and stored in the cloud, the cloud server will perform confidential similar matching when the user searches. At present, most research on searchable encryption is focused on text search, with few schemes researched on how to finish the graphic search. To solve this problem, this paper proposes a secure search protocol based on graph shape under the semi-honest model. Using the cut-choose method and zero-knowledge proof, further designs of the anti-malicious attack graphic similarity judgment system (AAJS) based on the Paillier encryption algorithm, can achieve the secure search and matching of the graph while resisting malicious adversary attacks. The proposed protocol’s security is proved by the real/ideal model paradigm. This paper conducts performance analysis and experimental simulation on the existing scheme and the experiments demonstrate that the system achieves high execution efficiency.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics12091983</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Cloud computing ; Design ; Disclosure ; Encryption ; Image retrieval ; Information processing ; Matching ; Privacy ; Protocol ; Search engines ; Searching ; Similarity</subject><ispartof>Electronics (Basel), 2023-04, Vol.12 (9), p.1983</ispartof><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c272t-240688040d2512624f5a982033d2e7f53748dd46b11d4cbd8bb7f272826975693</cites><orcidid>0000-0002-3450-3808 ; 0000-0002-0394-4635</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Liu, Xin</creatorcontrib><creatorcontrib>Liu, Xiaomeng</creatorcontrib><creatorcontrib>Xiong, Neal</creatorcontrib><creatorcontrib>Luo, Dan</creatorcontrib><creatorcontrib>Xu, Gang</creatorcontrib><creatorcontrib>Chen, Xiubo</creatorcontrib><title>AAJS: An Anti-Malicious Attack Graphic Similarity Judgment System in Cloud Computing Environments</title><title>Electronics (Basel)</title><description>With the rapid development of cloud computing and other modern technologies, collaborative computing between data is increasing, and privacy protection and secure multi-party computation are also attracting more attention. The emergence of cloud computing provides new options for data holders to perform complex computing problems and to store images; however, data privacy issues cannot be ignored. If a graphic is encrypted and stored in the cloud, the cloud server will perform confidential similar matching when the user searches. At present, most research on searchable encryption is focused on text search, with few schemes researched on how to finish the graphic search. To solve this problem, this paper proposes a secure search protocol based on graph shape under the semi-honest model. Using the cut-choose method and zero-knowledge proof, further designs of the anti-malicious attack graphic similarity judgment system (AAJS) based on the Paillier encryption algorithm, can achieve the secure search and matching of the graph while resisting malicious adversary attacks. The proposed protocol’s security is proved by the real/ideal model paradigm. This paper conducts performance analysis and experimental simulation on the existing scheme and the experiments demonstrate that the system achieves high execution efficiency.</description><subject>Algorithms</subject><subject>Cloud computing</subject><subject>Design</subject><subject>Disclosure</subject><subject>Encryption</subject><subject>Image retrieval</subject><subject>Information processing</subject><subject>Matching</subject><subject>Privacy</subject><subject>Protocol</subject><subject>Search engines</subject><subject>Searching</subject><subject>Similarity</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNptkE1LAzEQhoMoWGp_gZeA59Vksh-Jt2WpraXioXpeskm2pu6XSVbov3dLPXhwGJg5PO-8w4vQLSX3jAnyYBqjgus7qzwFIqjg7ALNgGQiEiDg8s9-jRbeH8hUgjLOyAzJPN_sHnHeTR1s9CIbq2w_epyHINUnXjk5fFiFd7a1jXQ2HPFm1PvWdAHvjj6YFtsOF00_alz07TAG2-3xsvu200cnyt-gq1o23ix-5xy9Py3finW0fV09F_k2UpBBiCAmKeckJhoSCinEdSIFB8KYBpPVCctirnWcVpTqWFWaV1VWT0oOqciSVLA5ujvfHVz_NRofykM_um6yLIFTYDyjJJ4odqaU6713pi4HZ1vpjiUl5SnO8p842Q-JZGoC</recordid><startdate>20230424</startdate><enddate>20230424</enddate><creator>Liu, Xin</creator><creator>Liu, Xiaomeng</creator><creator>Xiong, Neal</creator><creator>Luo, Dan</creator><creator>Xu, Gang</creator><creator>Chen, Xiubo</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-3450-3808</orcidid><orcidid>https://orcid.org/0000-0002-0394-4635</orcidid></search><sort><creationdate>20230424</creationdate><title>AAJS: An Anti-Malicious Attack Graphic Similarity Judgment System in Cloud Computing Environments</title><author>Liu, Xin ; Liu, Xiaomeng ; Xiong, Neal ; Luo, Dan ; Xu, Gang ; Chen, Xiubo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c272t-240688040d2512624f5a982033d2e7f53748dd46b11d4cbd8bb7f272826975693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Cloud computing</topic><topic>Design</topic><topic>Disclosure</topic><topic>Encryption</topic><topic>Image retrieval</topic><topic>Information processing</topic><topic>Matching</topic><topic>Privacy</topic><topic>Protocol</topic><topic>Search engines</topic><topic>Searching</topic><topic>Similarity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xin</creatorcontrib><creatorcontrib>Liu, Xiaomeng</creatorcontrib><creatorcontrib>Xiong, Neal</creatorcontrib><creatorcontrib>Luo, Dan</creatorcontrib><creatorcontrib>Xu, Gang</creatorcontrib><creatorcontrib>Chen, Xiubo</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Xin</au><au>Liu, Xiaomeng</au><au>Xiong, Neal</au><au>Luo, Dan</au><au>Xu, Gang</au><au>Chen, Xiubo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AAJS: An Anti-Malicious Attack Graphic Similarity Judgment System in Cloud Computing Environments</atitle><jtitle>Electronics (Basel)</jtitle><date>2023-04-24</date><risdate>2023</risdate><volume>12</volume><issue>9</issue><spage>1983</spage><pages>1983-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>With the rapid development of cloud computing and other modern technologies, collaborative computing between data is increasing, and privacy protection and secure multi-party computation are also attracting more attention. The emergence of cloud computing provides new options for data holders to perform complex computing problems and to store images; however, data privacy issues cannot be ignored. If a graphic is encrypted and stored in the cloud, the cloud server will perform confidential similar matching when the user searches. At present, most research on searchable encryption is focused on text search, with few schemes researched on how to finish the graphic search. To solve this problem, this paper proposes a secure search protocol based on graph shape under the semi-honest model. Using the cut-choose method and zero-knowledge proof, further designs of the anti-malicious attack graphic similarity judgment system (AAJS) based on the Paillier encryption algorithm, can achieve the secure search and matching of the graph while resisting malicious adversary attacks. The proposed protocol’s security is proved by the real/ideal model paradigm. This paper conducts performance analysis and experimental simulation on the existing scheme and the experiments demonstrate that the system achieves high execution efficiency.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics12091983</doi><orcidid>https://orcid.org/0000-0002-3450-3808</orcidid><orcidid>https://orcid.org/0000-0002-0394-4635</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2023-04, Vol.12 (9), p.1983 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_2812387104 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Cloud computing Design Disclosure Encryption Image retrieval Information processing Matching Privacy Protocol Search engines Searching Similarity |
title | AAJS: An Anti-Malicious Attack Graphic Similarity Judgment System in Cloud Computing Environments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T16%3A19%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AAJS:%20An%20Anti-Malicious%20Attack%20Graphic%20Similarity%20Judgment%20System%20in%20Cloud%20Computing%20Environments&rft.jtitle=Electronics%20(Basel)&rft.au=Liu,%20Xin&rft.date=2023-04-24&rft.volume=12&rft.issue=9&rft.spage=1983&rft.pages=1983-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics12091983&rft_dat=%3Cproquest_cross%3E2812387104%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2812387104&rft_id=info:pmid/&rfr_iscdi=true |