Structure and bonding trends of bisthiosemicarbazones: An overview

This review gives a comprehensive account in terms of the synthesis, characterization and biological application of bisthiosemicarbazone ligands and their metal complexes that have been reported until 2022. Their coordination chemistry with p and d block elements, where the structure is solved by si...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied organometallic chemistry 2023-06, Vol.37 (6), p.n/a
Hauptverfasser: Ain, Qurat Ul, Sharma, Rekha
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 6
container_start_page
container_title Applied organometallic chemistry
container_volume 37
creator Ain, Qurat Ul
Sharma, Rekha
description This review gives a comprehensive account in terms of the synthesis, characterization and biological application of bisthiosemicarbazone ligands and their metal complexes that have been reported until 2022. Their coordination chemistry with p and d block elements, where the structure is solved by single crystal X‐ray crystallography is explored. Complexes are placed group‐wise and their structure as well as bonding aspects are discussed separately. Various spectroscopic techniques for the characterization of ligands and their complexes like infrared (IR), ultraviolet‐visible (UV–Vis), electron spin resonance (ESR), and nuclear magnetic resonance (NMR) (1H, 13C, 31P, 59Co, 119Hg) are discussed. Complexes formed by bisthiosemicarbazones are generally mononuclear; however, in some cases, binuclear or polynuclear complexes have also been found. Square planar, square pyramidal, octahedral, and pentagonal pyramidal are some of the common geometries exhibited by these complexes. Structure–activity relationship was established for substituted and unsubstituted diimine bisthiosemicarbazone complexes of different metal ions. The effect of co‐ligands on biological activity is also discussed.
doi_str_mv 10.1002/aoc.7100
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2812291979</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2812291979</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2930-20f90aaa1b44e309cf694852a43e87495594f902656112ec271bb521be4a07933</originalsourceid><addsrcrecordid>eNp10E1LAzEQgOEgCtYq-BMCXrxsnWSzH_FWS_2AQg_qOSTprKa0SU12W-qvd2u9epo5PMzAS8g1gxED4Hc62FHVbydkwEDKDKpcnpIB8LLOeAnFOblIaQkAsmRiQB5e29jZtotItV9QE_zC-Q_aRvSLRENDjUvtpwsJ187qaPR38Jju6djTsMW4dbi7JGeNXiW8-ptD8v44fZs8Z7P508tkPMsslzlkHBoJWmtmhMAcpG1KKeqCa5FjXQlZFFL0gpdFyRhHyytmTMGZQaGhknk-JDfHu5sYvjpMrVqGLvr-peI141wy2bMhuT0qG0NKERu1iW6t414xUIdCqi-kDoV6mh3pzq1w_69T4_nk1_8AlgNlWQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2812291979</pqid></control><display><type>article</type><title>Structure and bonding trends of bisthiosemicarbazones: An overview</title><source>Wiley Online Library (Online service)</source><creator>Ain, Qurat Ul ; Sharma, Rekha</creator><creatorcontrib>Ain, Qurat Ul ; Sharma, Rekha</creatorcontrib><description>This review gives a comprehensive account in terms of the synthesis, characterization and biological application of bisthiosemicarbazone ligands and their metal complexes that have been reported until 2022. Their coordination chemistry with p and d block elements, where the structure is solved by single crystal X‐ray crystallography is explored. Complexes are placed group‐wise and their structure as well as bonding aspects are discussed separately. Various spectroscopic techniques for the characterization of ligands and their complexes like infrared (IR), ultraviolet‐visible (UV–Vis), electron spin resonance (ESR), and nuclear magnetic resonance (NMR) (1H, 13C, 31P, 59Co, 119Hg) are discussed. Complexes formed by bisthiosemicarbazones are generally mononuclear; however, in some cases, binuclear or polynuclear complexes have also been found. Square planar, square pyramidal, octahedral, and pentagonal pyramidal are some of the common geometries exhibited by these complexes. Structure–activity relationship was established for substituted and unsubstituted diimine bisthiosemicarbazone complexes of different metal ions. The effect of co‐ligands on biological activity is also discussed.</description><identifier>ISSN: 0268-2605</identifier><identifier>EISSN: 1099-0739</identifier><identifier>DOI: 10.1002/aoc.7100</identifier><language>eng</language><publisher>Chichester: Wiley Subscription Services, Inc</publisher><subject>Biological activity ; biological applications ; bisthiosemicarbazones ; Chemistry ; Coordination compounds ; Crystallography ; Electron paramagnetic resonance ; Electron spin ; Electrons ; Ligands ; metal complexes ; NMR ; Nuclear magnetic resonance ; Single crystals ; spectroscopic techniques ; Spin resonance ; X‐ray crystallography</subject><ispartof>Applied organometallic chemistry, 2023-06, Vol.37 (6), p.n/a</ispartof><rights>2023 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2930-20f90aaa1b44e309cf694852a43e87495594f902656112ec271bb521be4a07933</citedby><cites>FETCH-LOGICAL-c2930-20f90aaa1b44e309cf694852a43e87495594f902656112ec271bb521be4a07933</cites><orcidid>0000-0001-6356-0409 ; 0000-0002-5808-0045</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faoc.7100$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faoc.7100$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Ain, Qurat Ul</creatorcontrib><creatorcontrib>Sharma, Rekha</creatorcontrib><title>Structure and bonding trends of bisthiosemicarbazones: An overview</title><title>Applied organometallic chemistry</title><description>This review gives a comprehensive account in terms of the synthesis, characterization and biological application of bisthiosemicarbazone ligands and their metal complexes that have been reported until 2022. Their coordination chemistry with p and d block elements, where the structure is solved by single crystal X‐ray crystallography is explored. Complexes are placed group‐wise and their structure as well as bonding aspects are discussed separately. Various spectroscopic techniques for the characterization of ligands and their complexes like infrared (IR), ultraviolet‐visible (UV–Vis), electron spin resonance (ESR), and nuclear magnetic resonance (NMR) (1H, 13C, 31P, 59Co, 119Hg) are discussed. Complexes formed by bisthiosemicarbazones are generally mononuclear; however, in some cases, binuclear or polynuclear complexes have also been found. Square planar, square pyramidal, octahedral, and pentagonal pyramidal are some of the common geometries exhibited by these complexes. Structure–activity relationship was established for substituted and unsubstituted diimine bisthiosemicarbazone complexes of different metal ions. The effect of co‐ligands on biological activity is also discussed.</description><subject>Biological activity</subject><subject>biological applications</subject><subject>bisthiosemicarbazones</subject><subject>Chemistry</subject><subject>Coordination compounds</subject><subject>Crystallography</subject><subject>Electron paramagnetic resonance</subject><subject>Electron spin</subject><subject>Electrons</subject><subject>Ligands</subject><subject>metal complexes</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Single crystals</subject><subject>spectroscopic techniques</subject><subject>Spin resonance</subject><subject>X‐ray crystallography</subject><issn>0268-2605</issn><issn>1099-0739</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp10E1LAzEQgOEgCtYq-BMCXrxsnWSzH_FWS_2AQg_qOSTprKa0SU12W-qvd2u9epo5PMzAS8g1gxED4Hc62FHVbydkwEDKDKpcnpIB8LLOeAnFOblIaQkAsmRiQB5e29jZtotItV9QE_zC-Q_aRvSLRENDjUvtpwsJ187qaPR38Jju6djTsMW4dbi7JGeNXiW8-ptD8v44fZs8Z7P508tkPMsslzlkHBoJWmtmhMAcpG1KKeqCa5FjXQlZFFL0gpdFyRhHyytmTMGZQaGhknk-JDfHu5sYvjpMrVqGLvr-peI141wy2bMhuT0qG0NKERu1iW6t414xUIdCqi-kDoV6mh3pzq1w_69T4_nk1_8AlgNlWQ</recordid><startdate>202306</startdate><enddate>202306</enddate><creator>Ain, Qurat Ul</creator><creator>Sharma, Rekha</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6356-0409</orcidid><orcidid>https://orcid.org/0000-0002-5808-0045</orcidid></search><sort><creationdate>202306</creationdate><title>Structure and bonding trends of bisthiosemicarbazones: An overview</title><author>Ain, Qurat Ul ; Sharma, Rekha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2930-20f90aaa1b44e309cf694852a43e87495594f902656112ec271bb521be4a07933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biological activity</topic><topic>biological applications</topic><topic>bisthiosemicarbazones</topic><topic>Chemistry</topic><topic>Coordination compounds</topic><topic>Crystallography</topic><topic>Electron paramagnetic resonance</topic><topic>Electron spin</topic><topic>Electrons</topic><topic>Ligands</topic><topic>metal complexes</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Single crystals</topic><topic>spectroscopic techniques</topic><topic>Spin resonance</topic><topic>X‐ray crystallography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ain, Qurat Ul</creatorcontrib><creatorcontrib>Sharma, Rekha</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied organometallic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ain, Qurat Ul</au><au>Sharma, Rekha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure and bonding trends of bisthiosemicarbazones: An overview</atitle><jtitle>Applied organometallic chemistry</jtitle><date>2023-06</date><risdate>2023</risdate><volume>37</volume><issue>6</issue><epage>n/a</epage><issn>0268-2605</issn><eissn>1099-0739</eissn><abstract>This review gives a comprehensive account in terms of the synthesis, characterization and biological application of bisthiosemicarbazone ligands and their metal complexes that have been reported until 2022. Their coordination chemistry with p and d block elements, where the structure is solved by single crystal X‐ray crystallography is explored. Complexes are placed group‐wise and their structure as well as bonding aspects are discussed separately. Various spectroscopic techniques for the characterization of ligands and their complexes like infrared (IR), ultraviolet‐visible (UV–Vis), electron spin resonance (ESR), and nuclear magnetic resonance (NMR) (1H, 13C, 31P, 59Co, 119Hg) are discussed. Complexes formed by bisthiosemicarbazones are generally mononuclear; however, in some cases, binuclear or polynuclear complexes have also been found. Square planar, square pyramidal, octahedral, and pentagonal pyramidal are some of the common geometries exhibited by these complexes. Structure–activity relationship was established for substituted and unsubstituted diimine bisthiosemicarbazone complexes of different metal ions. The effect of co‐ligands on biological activity is also discussed.</abstract><cop>Chichester</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aoc.7100</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0001-6356-0409</orcidid><orcidid>https://orcid.org/0000-0002-5808-0045</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0268-2605
ispartof Applied organometallic chemistry, 2023-06, Vol.37 (6), p.n/a
issn 0268-2605
1099-0739
language eng
recordid cdi_proquest_journals_2812291979
source Wiley Online Library (Online service)
subjects Biological activity
biological applications
bisthiosemicarbazones
Chemistry
Coordination compounds
Crystallography
Electron paramagnetic resonance
Electron spin
Electrons
Ligands
metal complexes
NMR
Nuclear magnetic resonance
Single crystals
spectroscopic techniques
Spin resonance
X‐ray crystallography
title Structure and bonding trends of bisthiosemicarbazones: An overview
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T08%3A15%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20and%20bonding%20trends%20of%20bisthiosemicarbazones:%20An%20overview&rft.jtitle=Applied%20organometallic%20chemistry&rft.au=Ain,%20Qurat%20Ul&rft.date=2023-06&rft.volume=37&rft.issue=6&rft.epage=n/a&rft.issn=0268-2605&rft.eissn=1099-0739&rft_id=info:doi/10.1002/aoc.7100&rft_dat=%3Cproquest_cross%3E2812291979%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2812291979&rft_id=info:pmid/&rfr_iscdi=true