Structure and bonding trends of bisthiosemicarbazones: An overview
This review gives a comprehensive account in terms of the synthesis, characterization and biological application of bisthiosemicarbazone ligands and their metal complexes that have been reported until 2022. Their coordination chemistry with p and d block elements, where the structure is solved by si...
Gespeichert in:
Veröffentlicht in: | Applied organometallic chemistry 2023-06, Vol.37 (6), p.n/a |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 6 |
container_start_page | |
container_title | Applied organometallic chemistry |
container_volume | 37 |
creator | Ain, Qurat Ul Sharma, Rekha |
description | This review gives a comprehensive account in terms of the synthesis, characterization and biological application of bisthiosemicarbazone ligands and their metal complexes that have been reported until 2022. Their coordination chemistry with p and d block elements, where the structure is solved by single crystal X‐ray crystallography is explored. Complexes are placed group‐wise and their structure as well as bonding aspects are discussed separately. Various spectroscopic techniques for the characterization of ligands and their complexes like infrared (IR), ultraviolet‐visible (UV–Vis), electron spin resonance (ESR), and nuclear magnetic resonance (NMR) (1H, 13C, 31P, 59Co, 119Hg) are discussed. Complexes formed by bisthiosemicarbazones are generally mononuclear; however, in some cases, binuclear or polynuclear complexes have also been found. Square planar, square pyramidal, octahedral, and pentagonal pyramidal are some of the common geometries exhibited by these complexes. Structure–activity relationship was established for substituted and unsubstituted diimine bisthiosemicarbazone complexes of different metal ions. The effect of co‐ligands on biological activity is also discussed. |
doi_str_mv | 10.1002/aoc.7100 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2812291979</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2812291979</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2930-20f90aaa1b44e309cf694852a43e87495594f902656112ec271bb521be4a07933</originalsourceid><addsrcrecordid>eNp10E1LAzEQgOEgCtYq-BMCXrxsnWSzH_FWS_2AQg_qOSTprKa0SU12W-qvd2u9epo5PMzAS8g1gxED4Hc62FHVbydkwEDKDKpcnpIB8LLOeAnFOblIaQkAsmRiQB5e29jZtotItV9QE_zC-Q_aRvSLRENDjUvtpwsJ187qaPR38Jju6djTsMW4dbi7JGeNXiW8-ptD8v44fZs8Z7P508tkPMsslzlkHBoJWmtmhMAcpG1KKeqCa5FjXQlZFFL0gpdFyRhHyytmTMGZQaGhknk-JDfHu5sYvjpMrVqGLvr-peI141wy2bMhuT0qG0NKERu1iW6t414xUIdCqi-kDoV6mh3pzq1w_69T4_nk1_8AlgNlWQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2812291979</pqid></control><display><type>article</type><title>Structure and bonding trends of bisthiosemicarbazones: An overview</title><source>Wiley Online Library (Online service)</source><creator>Ain, Qurat Ul ; Sharma, Rekha</creator><creatorcontrib>Ain, Qurat Ul ; Sharma, Rekha</creatorcontrib><description>This review gives a comprehensive account in terms of the synthesis, characterization and biological application of bisthiosemicarbazone ligands and their metal complexes that have been reported until 2022. Their coordination chemistry with p and d block elements, where the structure is solved by single crystal X‐ray crystallography is explored. Complexes are placed group‐wise and their structure as well as bonding aspects are discussed separately. Various spectroscopic techniques for the characterization of ligands and their complexes like infrared (IR), ultraviolet‐visible (UV–Vis), electron spin resonance (ESR), and nuclear magnetic resonance (NMR) (1H, 13C, 31P, 59Co, 119Hg) are discussed. Complexes formed by bisthiosemicarbazones are generally mononuclear; however, in some cases, binuclear or polynuclear complexes have also been found. Square planar, square pyramidal, octahedral, and pentagonal pyramidal are some of the common geometries exhibited by these complexes. Structure–activity relationship was established for substituted and unsubstituted diimine bisthiosemicarbazone complexes of different metal ions. The effect of co‐ligands on biological activity is also discussed.</description><identifier>ISSN: 0268-2605</identifier><identifier>EISSN: 1099-0739</identifier><identifier>DOI: 10.1002/aoc.7100</identifier><language>eng</language><publisher>Chichester: Wiley Subscription Services, Inc</publisher><subject>Biological activity ; biological applications ; bisthiosemicarbazones ; Chemistry ; Coordination compounds ; Crystallography ; Electron paramagnetic resonance ; Electron spin ; Electrons ; Ligands ; metal complexes ; NMR ; Nuclear magnetic resonance ; Single crystals ; spectroscopic techniques ; Spin resonance ; X‐ray crystallography</subject><ispartof>Applied organometallic chemistry, 2023-06, Vol.37 (6), p.n/a</ispartof><rights>2023 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2930-20f90aaa1b44e309cf694852a43e87495594f902656112ec271bb521be4a07933</citedby><cites>FETCH-LOGICAL-c2930-20f90aaa1b44e309cf694852a43e87495594f902656112ec271bb521be4a07933</cites><orcidid>0000-0001-6356-0409 ; 0000-0002-5808-0045</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faoc.7100$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faoc.7100$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Ain, Qurat Ul</creatorcontrib><creatorcontrib>Sharma, Rekha</creatorcontrib><title>Structure and bonding trends of bisthiosemicarbazones: An overview</title><title>Applied organometallic chemistry</title><description>This review gives a comprehensive account in terms of the synthesis, characterization and biological application of bisthiosemicarbazone ligands and their metal complexes that have been reported until 2022. Their coordination chemistry with p and d block elements, where the structure is solved by single crystal X‐ray crystallography is explored. Complexes are placed group‐wise and their structure as well as bonding aspects are discussed separately. Various spectroscopic techniques for the characterization of ligands and their complexes like infrared (IR), ultraviolet‐visible (UV–Vis), electron spin resonance (ESR), and nuclear magnetic resonance (NMR) (1H, 13C, 31P, 59Co, 119Hg) are discussed. Complexes formed by bisthiosemicarbazones are generally mononuclear; however, in some cases, binuclear or polynuclear complexes have also been found. Square planar, square pyramidal, octahedral, and pentagonal pyramidal are some of the common geometries exhibited by these complexes. Structure–activity relationship was established for substituted and unsubstituted diimine bisthiosemicarbazone complexes of different metal ions. The effect of co‐ligands on biological activity is also discussed.</description><subject>Biological activity</subject><subject>biological applications</subject><subject>bisthiosemicarbazones</subject><subject>Chemistry</subject><subject>Coordination compounds</subject><subject>Crystallography</subject><subject>Electron paramagnetic resonance</subject><subject>Electron spin</subject><subject>Electrons</subject><subject>Ligands</subject><subject>metal complexes</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Single crystals</subject><subject>spectroscopic techniques</subject><subject>Spin resonance</subject><subject>X‐ray crystallography</subject><issn>0268-2605</issn><issn>1099-0739</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp10E1LAzEQgOEgCtYq-BMCXrxsnWSzH_FWS_2AQg_qOSTprKa0SU12W-qvd2u9epo5PMzAS8g1gxED4Hc62FHVbydkwEDKDKpcnpIB8LLOeAnFOblIaQkAsmRiQB5e29jZtotItV9QE_zC-Q_aRvSLRENDjUvtpwsJ187qaPR38Jju6djTsMW4dbi7JGeNXiW8-ptD8v44fZs8Z7P508tkPMsslzlkHBoJWmtmhMAcpG1KKeqCa5FjXQlZFFL0gpdFyRhHyytmTMGZQaGhknk-JDfHu5sYvjpMrVqGLvr-peI141wy2bMhuT0qG0NKERu1iW6t414xUIdCqi-kDoV6mh3pzq1w_69T4_nk1_8AlgNlWQ</recordid><startdate>202306</startdate><enddate>202306</enddate><creator>Ain, Qurat Ul</creator><creator>Sharma, Rekha</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6356-0409</orcidid><orcidid>https://orcid.org/0000-0002-5808-0045</orcidid></search><sort><creationdate>202306</creationdate><title>Structure and bonding trends of bisthiosemicarbazones: An overview</title><author>Ain, Qurat Ul ; Sharma, Rekha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2930-20f90aaa1b44e309cf694852a43e87495594f902656112ec271bb521be4a07933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biological activity</topic><topic>biological applications</topic><topic>bisthiosemicarbazones</topic><topic>Chemistry</topic><topic>Coordination compounds</topic><topic>Crystallography</topic><topic>Electron paramagnetic resonance</topic><topic>Electron spin</topic><topic>Electrons</topic><topic>Ligands</topic><topic>metal complexes</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Single crystals</topic><topic>spectroscopic techniques</topic><topic>Spin resonance</topic><topic>X‐ray crystallography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ain, Qurat Ul</creatorcontrib><creatorcontrib>Sharma, Rekha</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied organometallic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ain, Qurat Ul</au><au>Sharma, Rekha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure and bonding trends of bisthiosemicarbazones: An overview</atitle><jtitle>Applied organometallic chemistry</jtitle><date>2023-06</date><risdate>2023</risdate><volume>37</volume><issue>6</issue><epage>n/a</epage><issn>0268-2605</issn><eissn>1099-0739</eissn><abstract>This review gives a comprehensive account in terms of the synthesis, characterization and biological application of bisthiosemicarbazone ligands and their metal complexes that have been reported until 2022. Their coordination chemistry with p and d block elements, where the structure is solved by single crystal X‐ray crystallography is explored. Complexes are placed group‐wise and their structure as well as bonding aspects are discussed separately. Various spectroscopic techniques for the characterization of ligands and their complexes like infrared (IR), ultraviolet‐visible (UV–Vis), electron spin resonance (ESR), and nuclear magnetic resonance (NMR) (1H, 13C, 31P, 59Co, 119Hg) are discussed. Complexes formed by bisthiosemicarbazones are generally mononuclear; however, in some cases, binuclear or polynuclear complexes have also been found. Square planar, square pyramidal, octahedral, and pentagonal pyramidal are some of the common geometries exhibited by these complexes. Structure–activity relationship was established for substituted and unsubstituted diimine bisthiosemicarbazone complexes of different metal ions. The effect of co‐ligands on biological activity is also discussed.</abstract><cop>Chichester</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aoc.7100</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0001-6356-0409</orcidid><orcidid>https://orcid.org/0000-0002-5808-0045</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0268-2605 |
ispartof | Applied organometallic chemistry, 2023-06, Vol.37 (6), p.n/a |
issn | 0268-2605 1099-0739 |
language | eng |
recordid | cdi_proquest_journals_2812291979 |
source | Wiley Online Library (Online service) |
subjects | Biological activity biological applications bisthiosemicarbazones Chemistry Coordination compounds Crystallography Electron paramagnetic resonance Electron spin Electrons Ligands metal complexes NMR Nuclear magnetic resonance Single crystals spectroscopic techniques Spin resonance X‐ray crystallography |
title | Structure and bonding trends of bisthiosemicarbazones: An overview |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T08%3A15%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20and%20bonding%20trends%20of%20bisthiosemicarbazones:%20An%20overview&rft.jtitle=Applied%20organometallic%20chemistry&rft.au=Ain,%20Qurat%20Ul&rft.date=2023-06&rft.volume=37&rft.issue=6&rft.epage=n/a&rft.issn=0268-2605&rft.eissn=1099-0739&rft_id=info:doi/10.1002/aoc.7100&rft_dat=%3Cproquest_cross%3E2812291979%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2812291979&rft_id=info:pmid/&rfr_iscdi=true |