Parallel hybrid quantum-classical machine learning for kernelized time-series classification

Supervised time-series classification garners widespread interest because of its applicability throughout a broad application domain including finance, astronomy, biosensors, and many others. In this work, we tackle this problem with hybrid quantum-classical machine learning, deducing pairwise tempo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-02
Hauptverfasser: Baker, Jack S, Park, Gilchan, Yu, Kwangmin, Ghukasyan, Ara, Oktay Goktas, Radha, Santosh Kumar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Supervised time-series classification garners widespread interest because of its applicability throughout a broad application domain including finance, astronomy, biosensors, and many others. In this work, we tackle this problem with hybrid quantum-classical machine learning, deducing pairwise temporal relationships between time-series instances using a time-series Hamiltonian kernel (TSHK). A TSHK is constructed with a sum of inner products generated by quantum states evolved using a parameterized time evolution operator. This sum is then optimally weighted using techniques derived from multiple kernel learning. Because we treat the kernel weighting step as a differentiable convex optimization problem, our method can be regarded as an end-to-end learnable hybrid quantum-classical-convex neural network, or QCC-net, whose output is a data set-generalized kernel function suitable for use in any kernelized machine learning technique such as the support vector machine (SVM). Using our TSHK as input to a SVM, we classify univariate and multivariate time-series using quantum circuit simulators and demonstrate the efficient parallel deployment of the algorithm to 127-qubit superconducting quantum processors using quantum multi-programming.
ISSN:2331-8422