Parallel hybrid quantum-classical machine learning for kernelized time-series classification
Supervised time-series classification garners widespread interest because of its applicability throughout a broad application domain including finance, astronomy, biosensors, and many others. In this work, we tackle this problem with hybrid quantum-classical machine learning, deducing pairwise tempo...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-02 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Supervised time-series classification garners widespread interest because of its applicability throughout a broad application domain including finance, astronomy, biosensors, and many others. In this work, we tackle this problem with hybrid quantum-classical machine learning, deducing pairwise temporal relationships between time-series instances using a time-series Hamiltonian kernel (TSHK). A TSHK is constructed with a sum of inner products generated by quantum states evolved using a parameterized time evolution operator. This sum is then optimally weighted using techniques derived from multiple kernel learning. Because we treat the kernel weighting step as a differentiable convex optimization problem, our method can be regarded as an end-to-end learnable hybrid quantum-classical-convex neural network, or QCC-net, whose output is a data set-generalized kernel function suitable for use in any kernelized machine learning technique such as the support vector machine (SVM). Using our TSHK as input to a SVM, we classify univariate and multivariate time-series using quantum circuit simulators and demonstrate the efficient parallel deployment of the algorithm to 127-qubit superconducting quantum processors using quantum multi-programming. |
---|---|
ISSN: | 2331-8422 |