On the Temporal Decay for the 2D Non-resistive Incompressible MHD Equations

Califano–Chiuderi (Phys Rev E 60(Part B): 4701–4707, 1999) gave the numerical observation that the energy of the MHD equations is dissipated at a rate independent of the ohmic resistivity, which was first proved by Ren et al. (J Funct Anal 267: 503–541, 2014) (the initial data near ( 0 , e → 1 ) , e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annales Henri Poincaré 2023-06, Vol.24 (6), p.2005-2065
1. Verfasser: Wan, Renhui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2065
container_issue 6
container_start_page 2005
container_title Annales Henri Poincaré
container_volume 24
creator Wan, Renhui
description Califano–Chiuderi (Phys Rev E 60(Part B): 4701–4707, 1999) gave the numerical observation that the energy of the MHD equations is dissipated at a rate independent of the ohmic resistivity, which was first proved by Ren et al. (J Funct Anal 267: 503–541, 2014) (the initial data near ( 0 , e → 1 ) , e → 1 = ( 1 , 0 ) ). Precisely, they showed some explicit decay rates of solutions in L 2 norm. So a nature question is whether the obtained decay rates in Ren et al. (J Funct Anal 267: 503–541, 2014) are optimal. In this paper, we aim at giving the explicit decay rates of solutions in both L 2 norm and L ∞ norm. In particular, our decay rate in terms of L 2 norm improves the previous work Ren et al. (J Funct Anal 267: 503–541, 2014).
doi_str_mv 10.1007/s00023-023-01268-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2812063092</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2812063092</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-8bd762836fdb29f6aa9ba9297995edf91a3765696f5ad9d256de4f25e8c0d3303</originalsourceid><addsrcrecordid>eNp9UMtOAjEUbYwmIvoDrpq4rt62TGe6NIBCRNnguulMWx0C06EdTPh7C2N05-LmPnIeuQehWwr3FCB_iADAODkVZaIg_AwN6IiNCAhBz39nnl-iqxjXkFAFlwP0smxw92nxym5bH_QGT2ylD9j5cDqzCX7zDQk21rGrvyyeN5XftmmPdbmx-HU2wdPdXne1b-I1unB6E-3NTx-i96fpajwji-XzfPy4IBXLoSNFaXKR3IUzJZNOaC1LLZnMpcyscZJqnotMSOEybaRhmTB25FhmiwoM58CH6K7XbYPf7W3s1NrvQ5MsFSsoS1-CZAnFelQVfIzBOtWGeqvDQVFQx9BUH5o61TE0xROJ96SYwM2HDX_S_7C-AfadbcM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2812063092</pqid></control><display><type>article</type><title>On the Temporal Decay for the 2D Non-resistive Incompressible MHD Equations</title><source>SpringerLink Journals - AutoHoldings</source><creator>Wan, Renhui</creator><creatorcontrib>Wan, Renhui</creatorcontrib><description>Califano–Chiuderi (Phys Rev E 60(Part B): 4701–4707, 1999) gave the numerical observation that the energy of the MHD equations is dissipated at a rate independent of the ohmic resistivity, which was first proved by Ren et al. (J Funct Anal 267: 503–541, 2014) (the initial data near ( 0 , e → 1 ) , e → 1 = ( 1 , 0 ) ). Precisely, they showed some explicit decay rates of solutions in L 2 norm. So a nature question is whether the obtained decay rates in Ren et al. (J Funct Anal 267: 503–541, 2014) are optimal. In this paper, we aim at giving the explicit decay rates of solutions in both L 2 norm and L ∞ norm. In particular, our decay rate in terms of L 2 norm improves the previous work Ren et al. (J Funct Anal 267: 503–541, 2014).</description><identifier>ISSN: 1424-0637</identifier><identifier>EISSN: 1424-0661</identifier><identifier>DOI: 10.1007/s00023-023-01268-3</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Classical and Quantum Gravitation ; Decay rate ; Dynamical Systems and Ergodic Theory ; Elementary Particles ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Original Paper ; Physics ; Physics and Astronomy ; Quantum Field Theory ; Quantum Physics ; Relativity Theory ; Theoretical</subject><ispartof>Annales Henri Poincaré, 2023-06, Vol.24 (6), p.2005-2065</ispartof><rights>Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-8bd762836fdb29f6aa9ba9297995edf91a3765696f5ad9d256de4f25e8c0d3303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00023-023-01268-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00023-023-01268-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Wan, Renhui</creatorcontrib><title>On the Temporal Decay for the 2D Non-resistive Incompressible MHD Equations</title><title>Annales Henri Poincaré</title><addtitle>Ann. Henri Poincaré</addtitle><description>Califano–Chiuderi (Phys Rev E 60(Part B): 4701–4707, 1999) gave the numerical observation that the energy of the MHD equations is dissipated at a rate independent of the ohmic resistivity, which was first proved by Ren et al. (J Funct Anal 267: 503–541, 2014) (the initial data near ( 0 , e → 1 ) , e → 1 = ( 1 , 0 ) ). Precisely, they showed some explicit decay rates of solutions in L 2 norm. So a nature question is whether the obtained decay rates in Ren et al. (J Funct Anal 267: 503–541, 2014) are optimal. In this paper, we aim at giving the explicit decay rates of solutions in both L 2 norm and L ∞ norm. In particular, our decay rate in terms of L 2 norm improves the previous work Ren et al. (J Funct Anal 267: 503–541, 2014).</description><subject>Classical and Quantum Gravitation</subject><subject>Decay rate</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Elementary Particles</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Original Paper</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Theoretical</subject><issn>1424-0637</issn><issn>1424-0661</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOAjEUbYwmIvoDrpq4rt62TGe6NIBCRNnguulMWx0C06EdTPh7C2N05-LmPnIeuQehWwr3FCB_iADAODkVZaIg_AwN6IiNCAhBz39nnl-iqxjXkFAFlwP0smxw92nxym5bH_QGT2ylD9j5cDqzCX7zDQk21rGrvyyeN5XftmmPdbmx-HU2wdPdXne1b-I1unB6E-3NTx-i96fpajwji-XzfPy4IBXLoSNFaXKR3IUzJZNOaC1LLZnMpcyscZJqnotMSOEybaRhmTB25FhmiwoM58CH6K7XbYPf7W3s1NrvQ5MsFSsoS1-CZAnFelQVfIzBOtWGeqvDQVFQx9BUH5o61TE0xROJ96SYwM2HDX_S_7C-AfadbcM</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Wan, Renhui</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230601</creationdate><title>On the Temporal Decay for the 2D Non-resistive Incompressible MHD Equations</title><author>Wan, Renhui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-8bd762836fdb29f6aa9ba9297995edf91a3765696f5ad9d256de4f25e8c0d3303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Decay rate</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Elementary Particles</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Original Paper</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wan, Renhui</creatorcontrib><collection>CrossRef</collection><jtitle>Annales Henri Poincaré</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wan, Renhui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Temporal Decay for the 2D Non-resistive Incompressible MHD Equations</atitle><jtitle>Annales Henri Poincaré</jtitle><stitle>Ann. Henri Poincaré</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>24</volume><issue>6</issue><spage>2005</spage><epage>2065</epage><pages>2005-2065</pages><issn>1424-0637</issn><eissn>1424-0661</eissn><abstract>Califano–Chiuderi (Phys Rev E 60(Part B): 4701–4707, 1999) gave the numerical observation that the energy of the MHD equations is dissipated at a rate independent of the ohmic resistivity, which was first proved by Ren et al. (J Funct Anal 267: 503–541, 2014) (the initial data near ( 0 , e → 1 ) , e → 1 = ( 1 , 0 ) ). Precisely, they showed some explicit decay rates of solutions in L 2 norm. So a nature question is whether the obtained decay rates in Ren et al. (J Funct Anal 267: 503–541, 2014) are optimal. In this paper, we aim at giving the explicit decay rates of solutions in both L 2 norm and L ∞ norm. In particular, our decay rate in terms of L 2 norm improves the previous work Ren et al. (J Funct Anal 267: 503–541, 2014).</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00023-023-01268-3</doi><tpages>61</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1424-0637
ispartof Annales Henri Poincaré, 2023-06, Vol.24 (6), p.2005-2065
issn 1424-0637
1424-0661
language eng
recordid cdi_proquest_journals_2812063092
source SpringerLink Journals - AutoHoldings
subjects Classical and Quantum Gravitation
Decay rate
Dynamical Systems and Ergodic Theory
Elementary Particles
Mathematical and Computational Physics
Mathematical Methods in Physics
Original Paper
Physics
Physics and Astronomy
Quantum Field Theory
Quantum Physics
Relativity Theory
Theoretical
title On the Temporal Decay for the 2D Non-resistive Incompressible MHD Equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T16%3A29%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Temporal%20Decay%20for%20the%202D%20Non-resistive%20Incompressible%20MHD%20Equations&rft.jtitle=Annales%20Henri%20Poincar%C3%A9&rft.au=Wan,%20Renhui&rft.date=2023-06-01&rft.volume=24&rft.issue=6&rft.spage=2005&rft.epage=2065&rft.pages=2005-2065&rft.issn=1424-0637&rft.eissn=1424-0661&rft_id=info:doi/10.1007/s00023-023-01268-3&rft_dat=%3Cproquest_cross%3E2812063092%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2812063092&rft_id=info:pmid/&rfr_iscdi=true