Thermally reversible pattern formation in arrays of molecular rotors

Control over the mesoscale to microscale patterning of materials is of great interest to the soft matter community. Inspired by DNA origami rotors, we introduce a 2D nearest-neighbor lattice of spinning rotors that exhibit discrete orientational states and interactions with their neighbors. Monte Ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2023-05, Vol.15 (18), p.8356-8365
Hauptverfasser: DeLuca, Marcello, Pfeifer, Wolfgang G, Randoing, Benjamin, Huang, Chao-Min, Poirier, Michael G, Castro, Carlos E, Arya, Gaurav
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8365
container_issue 18
container_start_page 8356
container_title Nanoscale
container_volume 15
creator DeLuca, Marcello
Pfeifer, Wolfgang G
Randoing, Benjamin
Huang, Chao-Min
Poirier, Michael G
Castro, Carlos E
Arya, Gaurav
description Control over the mesoscale to microscale patterning of materials is of great interest to the soft matter community. Inspired by DNA origami rotors, we introduce a 2D nearest-neighbor lattice of spinning rotors that exhibit discrete orientational states and interactions with their neighbors. Monte Carlo simulations of rotor lattices reveal that they exhibit a variety of interesting ordering behaviors and morphologies that can be modulated through rotor design parameters. The rotor arrays exhibit diverse patterns including closed loops, radiating loops, and bricklayer structures in their ordered states. They exhibit specific heat peaks at very low temperatures for small system sizes, and some systems exhibit multiple order-disorder transitions depending on inter-rotor interaction design. We devise an energy-based order parameter and show via umbrella sampling and histogram reweighting that this order parameter captures well the order-disorder transitions occurring in these systems. We fabricate real DNA origami rotors which themselves can order via programmable DNA base-pairing interactions and demonstrate both ordered and disordered phases, illustrating how rotor lattices may be realized experimentally and used for responsive organization. This work establishes the feasibility of realizing structural nanomaterials that exhibit locally mediated microscale patterns which could have applications in sensing and precision surface patterning. In this work, we describe the development of a computational model for arrays of rotary DNA origami elements which can self-organize on a large scale and explore the interesting morphologies and order-disorder transition behavior of these systems.
doi_str_mv 10.1039/d2nr05813h
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2811840284</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2805518461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-77a5b96197c1f6d43509bf6d5f1f5d57c2e3c4aaf9418d579974ea66c9f5d7883</originalsourceid><addsrcrecordid>eNpd0c1LwzAYBvAgipvTi3el4EWEar7THGVTJwwFmeeSZinraJv5phX23xvdnOApb3h-vIQnCJ0TfEsw03cL2gIWGWHLAzSkmOOUMUUP97PkA3QSwgpjqZlkx2jAFNaUaj5Ek_nSQWPqepOA-3QQqqJ2ydp0nYM2KX3Musq3SdUmBsBsQuLLpPG1s31tIAHfeQin6Kg0dXBnu3OE3h8f5uNpOnt9eh7fz1LLFOtSpYwotCRaWVLKBWcC6yIOoiSlWAhlqWOWG1NqTrJ411pxZ6S0OsYqy9gIXW_3rsF_9C50eVMF6-ratM73IacZFoJkXJJIr_7Rle-hja-LikSDacajutkqCz4EcGW-hqoxsMkJzr-7zSf05e2n22nEl7uVfdG4xZ7-lhnBxRZAsPv073PYF4y9fYY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2811840284</pqid></control><display><type>article</type><title>Thermally reversible pattern formation in arrays of molecular rotors</title><source>Royal Society Of Chemistry Journals</source><creator>DeLuca, Marcello ; Pfeifer, Wolfgang G ; Randoing, Benjamin ; Huang, Chao-Min ; Poirier, Michael G ; Castro, Carlos E ; Arya, Gaurav</creator><creatorcontrib>DeLuca, Marcello ; Pfeifer, Wolfgang G ; Randoing, Benjamin ; Huang, Chao-Min ; Poirier, Michael G ; Castro, Carlos E ; Arya, Gaurav</creatorcontrib><description>Control over the mesoscale to microscale patterning of materials is of great interest to the soft matter community. Inspired by DNA origami rotors, we introduce a 2D nearest-neighbor lattice of spinning rotors that exhibit discrete orientational states and interactions with their neighbors. Monte Carlo simulations of rotor lattices reveal that they exhibit a variety of interesting ordering behaviors and morphologies that can be modulated through rotor design parameters. The rotor arrays exhibit diverse patterns including closed loops, radiating loops, and bricklayer structures in their ordered states. They exhibit specific heat peaks at very low temperatures for small system sizes, and some systems exhibit multiple order-disorder transitions depending on inter-rotor interaction design. We devise an energy-based order parameter and show via umbrella sampling and histogram reweighting that this order parameter captures well the order-disorder transitions occurring in these systems. We fabricate real DNA origami rotors which themselves can order via programmable DNA base-pairing interactions and demonstrate both ordered and disordered phases, illustrating how rotor lattices may be realized experimentally and used for responsive organization. This work establishes the feasibility of realizing structural nanomaterials that exhibit locally mediated microscale patterns which could have applications in sensing and precision surface patterning. In this work, we describe the development of a computational model for arrays of rotary DNA origami elements which can self-organize on a large scale and explore the interesting morphologies and order-disorder transition behavior of these systems.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d2nr05813h</identifier><identifier>PMID: 37092294</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Arrays ; Closed loops ; Design parameters ; Lattices ; Low temperature ; Nanomaterials ; Order parameters ; Patterning ; Rotors ; Spinning (materials)</subject><ispartof>Nanoscale, 2023-05, Vol.15 (18), p.8356-8365</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-77a5b96197c1f6d43509bf6d5f1f5d57c2e3c4aaf9418d579974ea66c9f5d7883</citedby><cites>FETCH-LOGICAL-c373t-77a5b96197c1f6d43509bf6d5f1f5d57c2e3c4aaf9418d579974ea66c9f5d7883</cites><orcidid>0000-0002-4299-3501 ; 0000-0002-5615-0521 ; 0000-0002-5589-8415 ; 0000-0002-1563-5792 ; 0000-0001-7023-6105</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37092294$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>DeLuca, Marcello</creatorcontrib><creatorcontrib>Pfeifer, Wolfgang G</creatorcontrib><creatorcontrib>Randoing, Benjamin</creatorcontrib><creatorcontrib>Huang, Chao-Min</creatorcontrib><creatorcontrib>Poirier, Michael G</creatorcontrib><creatorcontrib>Castro, Carlos E</creatorcontrib><creatorcontrib>Arya, Gaurav</creatorcontrib><title>Thermally reversible pattern formation in arrays of molecular rotors</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>Control over the mesoscale to microscale patterning of materials is of great interest to the soft matter community. Inspired by DNA origami rotors, we introduce a 2D nearest-neighbor lattice of spinning rotors that exhibit discrete orientational states and interactions with their neighbors. Monte Carlo simulations of rotor lattices reveal that they exhibit a variety of interesting ordering behaviors and morphologies that can be modulated through rotor design parameters. The rotor arrays exhibit diverse patterns including closed loops, radiating loops, and bricklayer structures in their ordered states. They exhibit specific heat peaks at very low temperatures for small system sizes, and some systems exhibit multiple order-disorder transitions depending on inter-rotor interaction design. We devise an energy-based order parameter and show via umbrella sampling and histogram reweighting that this order parameter captures well the order-disorder transitions occurring in these systems. We fabricate real DNA origami rotors which themselves can order via programmable DNA base-pairing interactions and demonstrate both ordered and disordered phases, illustrating how rotor lattices may be realized experimentally and used for responsive organization. This work establishes the feasibility of realizing structural nanomaterials that exhibit locally mediated microscale patterns which could have applications in sensing and precision surface patterning. In this work, we describe the development of a computational model for arrays of rotary DNA origami elements which can self-organize on a large scale and explore the interesting morphologies and order-disorder transition behavior of these systems.</description><subject>Arrays</subject><subject>Closed loops</subject><subject>Design parameters</subject><subject>Lattices</subject><subject>Low temperature</subject><subject>Nanomaterials</subject><subject>Order parameters</subject><subject>Patterning</subject><subject>Rotors</subject><subject>Spinning (materials)</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpd0c1LwzAYBvAgipvTi3el4EWEar7THGVTJwwFmeeSZinraJv5phX23xvdnOApb3h-vIQnCJ0TfEsw03cL2gIWGWHLAzSkmOOUMUUP97PkA3QSwgpjqZlkx2jAFNaUaj5Ek_nSQWPqepOA-3QQqqJ2ydp0nYM2KX3Musq3SdUmBsBsQuLLpPG1s31tIAHfeQin6Kg0dXBnu3OE3h8f5uNpOnt9eh7fz1LLFOtSpYwotCRaWVLKBWcC6yIOoiSlWAhlqWOWG1NqTrJ411pxZ6S0OsYqy9gIXW_3rsF_9C50eVMF6-ratM73IacZFoJkXJJIr_7Rle-hja-LikSDacajutkqCz4EcGW-hqoxsMkJzr-7zSf05e2n22nEl7uVfdG4xZ7-lhnBxRZAsPv073PYF4y9fYY</recordid><startdate>20230511</startdate><enddate>20230511</enddate><creator>DeLuca, Marcello</creator><creator>Pfeifer, Wolfgang G</creator><creator>Randoing, Benjamin</creator><creator>Huang, Chao-Min</creator><creator>Poirier, Michael G</creator><creator>Castro, Carlos E</creator><creator>Arya, Gaurav</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4299-3501</orcidid><orcidid>https://orcid.org/0000-0002-5615-0521</orcidid><orcidid>https://orcid.org/0000-0002-5589-8415</orcidid><orcidid>https://orcid.org/0000-0002-1563-5792</orcidid><orcidid>https://orcid.org/0000-0001-7023-6105</orcidid></search><sort><creationdate>20230511</creationdate><title>Thermally reversible pattern formation in arrays of molecular rotors</title><author>DeLuca, Marcello ; Pfeifer, Wolfgang G ; Randoing, Benjamin ; Huang, Chao-Min ; Poirier, Michael G ; Castro, Carlos E ; Arya, Gaurav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-77a5b96197c1f6d43509bf6d5f1f5d57c2e3c4aaf9418d579974ea66c9f5d7883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Arrays</topic><topic>Closed loops</topic><topic>Design parameters</topic><topic>Lattices</topic><topic>Low temperature</topic><topic>Nanomaterials</topic><topic>Order parameters</topic><topic>Patterning</topic><topic>Rotors</topic><topic>Spinning (materials)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DeLuca, Marcello</creatorcontrib><creatorcontrib>Pfeifer, Wolfgang G</creatorcontrib><creatorcontrib>Randoing, Benjamin</creatorcontrib><creatorcontrib>Huang, Chao-Min</creatorcontrib><creatorcontrib>Poirier, Michael G</creatorcontrib><creatorcontrib>Castro, Carlos E</creatorcontrib><creatorcontrib>Arya, Gaurav</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DeLuca, Marcello</au><au>Pfeifer, Wolfgang G</au><au>Randoing, Benjamin</au><au>Huang, Chao-Min</au><au>Poirier, Michael G</au><au>Castro, Carlos E</au><au>Arya, Gaurav</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermally reversible pattern formation in arrays of molecular rotors</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2023-05-11</date><risdate>2023</risdate><volume>15</volume><issue>18</issue><spage>8356</spage><epage>8365</epage><pages>8356-8365</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Control over the mesoscale to microscale patterning of materials is of great interest to the soft matter community. Inspired by DNA origami rotors, we introduce a 2D nearest-neighbor lattice of spinning rotors that exhibit discrete orientational states and interactions with their neighbors. Monte Carlo simulations of rotor lattices reveal that they exhibit a variety of interesting ordering behaviors and morphologies that can be modulated through rotor design parameters. The rotor arrays exhibit diverse patterns including closed loops, radiating loops, and bricklayer structures in their ordered states. They exhibit specific heat peaks at very low temperatures for small system sizes, and some systems exhibit multiple order-disorder transitions depending on inter-rotor interaction design. We devise an energy-based order parameter and show via umbrella sampling and histogram reweighting that this order parameter captures well the order-disorder transitions occurring in these systems. We fabricate real DNA origami rotors which themselves can order via programmable DNA base-pairing interactions and demonstrate both ordered and disordered phases, illustrating how rotor lattices may be realized experimentally and used for responsive organization. This work establishes the feasibility of realizing structural nanomaterials that exhibit locally mediated microscale patterns which could have applications in sensing and precision surface patterning. In this work, we describe the development of a computational model for arrays of rotary DNA origami elements which can self-organize on a large scale and explore the interesting morphologies and order-disorder transition behavior of these systems.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>37092294</pmid><doi>10.1039/d2nr05813h</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-4299-3501</orcidid><orcidid>https://orcid.org/0000-0002-5615-0521</orcidid><orcidid>https://orcid.org/0000-0002-5589-8415</orcidid><orcidid>https://orcid.org/0000-0002-1563-5792</orcidid><orcidid>https://orcid.org/0000-0001-7023-6105</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2023-05, Vol.15 (18), p.8356-8365
issn 2040-3364
2040-3372
language eng
recordid cdi_proquest_journals_2811840284
source Royal Society Of Chemistry Journals
subjects Arrays
Closed loops
Design parameters
Lattices
Low temperature
Nanomaterials
Order parameters
Patterning
Rotors
Spinning (materials)
title Thermally reversible pattern formation in arrays of molecular rotors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T01%3A16%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermally%20reversible%20pattern%20formation%20in%20arrays%20of%20molecular%20rotors&rft.jtitle=Nanoscale&rft.au=DeLuca,%20Marcello&rft.date=2023-05-11&rft.volume=15&rft.issue=18&rft.spage=8356&rft.epage=8365&rft.pages=8356-8365&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d2nr05813h&rft_dat=%3Cproquest_pubme%3E2805518461%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2811840284&rft_id=info:pmid/37092294&rfr_iscdi=true