Thermally reversible pattern formation in arrays of molecular rotors
Control over the mesoscale to microscale patterning of materials is of great interest to the soft matter community. Inspired by DNA origami rotors, we introduce a 2D nearest-neighbor lattice of spinning rotors that exhibit discrete orientational states and interactions with their neighbors. Monte Ca...
Gespeichert in:
Veröffentlicht in: | Nanoscale 2023-05, Vol.15 (18), p.8356-8365 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8365 |
---|---|
container_issue | 18 |
container_start_page | 8356 |
container_title | Nanoscale |
container_volume | 15 |
creator | DeLuca, Marcello Pfeifer, Wolfgang G Randoing, Benjamin Huang, Chao-Min Poirier, Michael G Castro, Carlos E Arya, Gaurav |
description | Control over the mesoscale to microscale patterning of materials is of great interest to the soft matter community. Inspired by DNA origami rotors, we introduce a 2D nearest-neighbor lattice of spinning rotors that exhibit discrete orientational states and interactions with their neighbors. Monte Carlo simulations of rotor lattices reveal that they exhibit a variety of interesting ordering behaviors and morphologies that can be modulated through rotor design parameters. The rotor arrays exhibit diverse patterns including closed loops, radiating loops, and bricklayer structures in their ordered states. They exhibit specific heat peaks at very low temperatures for small system sizes, and some systems exhibit multiple order-disorder transitions depending on inter-rotor interaction design. We devise an energy-based order parameter and show
via
umbrella sampling and histogram reweighting that this order parameter captures well the order-disorder transitions occurring in these systems. We fabricate real DNA origami rotors which themselves can order
via
programmable DNA base-pairing interactions and demonstrate both ordered and disordered phases, illustrating how rotor lattices may be realized experimentally and used for responsive organization. This work establishes the feasibility of realizing structural nanomaterials that exhibit locally mediated microscale patterns which could have applications in sensing and precision surface patterning.
In this work, we describe the development of a computational model for arrays of rotary DNA origami elements which can self-organize on a large scale and explore the interesting morphologies and order-disorder transition behavior of these systems. |
doi_str_mv | 10.1039/d2nr05813h |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2811840284</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2805518461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-77a5b96197c1f6d43509bf6d5f1f5d57c2e3c4aaf9418d579974ea66c9f5d7883</originalsourceid><addsrcrecordid>eNpd0c1LwzAYBvAgipvTi3el4EWEar7THGVTJwwFmeeSZinraJv5phX23xvdnOApb3h-vIQnCJ0TfEsw03cL2gIWGWHLAzSkmOOUMUUP97PkA3QSwgpjqZlkx2jAFNaUaj5Ek_nSQWPqepOA-3QQqqJ2ydp0nYM2KX3Musq3SdUmBsBsQuLLpPG1s31tIAHfeQin6Kg0dXBnu3OE3h8f5uNpOnt9eh7fz1LLFOtSpYwotCRaWVLKBWcC6yIOoiSlWAhlqWOWG1NqTrJ411pxZ6S0OsYqy9gIXW_3rsF_9C50eVMF6-ratM73IacZFoJkXJJIr_7Rle-hja-LikSDacajutkqCz4EcGW-hqoxsMkJzr-7zSf05e2n22nEl7uVfdG4xZ7-lhnBxRZAsPv073PYF4y9fYY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2811840284</pqid></control><display><type>article</type><title>Thermally reversible pattern formation in arrays of molecular rotors</title><source>Royal Society Of Chemistry Journals</source><creator>DeLuca, Marcello ; Pfeifer, Wolfgang G ; Randoing, Benjamin ; Huang, Chao-Min ; Poirier, Michael G ; Castro, Carlos E ; Arya, Gaurav</creator><creatorcontrib>DeLuca, Marcello ; Pfeifer, Wolfgang G ; Randoing, Benjamin ; Huang, Chao-Min ; Poirier, Michael G ; Castro, Carlos E ; Arya, Gaurav</creatorcontrib><description>Control over the mesoscale to microscale patterning of materials is of great interest to the soft matter community. Inspired by DNA origami rotors, we introduce a 2D nearest-neighbor lattice of spinning rotors that exhibit discrete orientational states and interactions with their neighbors. Monte Carlo simulations of rotor lattices reveal that they exhibit a variety of interesting ordering behaviors and morphologies that can be modulated through rotor design parameters. The rotor arrays exhibit diverse patterns including closed loops, radiating loops, and bricklayer structures in their ordered states. They exhibit specific heat peaks at very low temperatures for small system sizes, and some systems exhibit multiple order-disorder transitions depending on inter-rotor interaction design. We devise an energy-based order parameter and show
via
umbrella sampling and histogram reweighting that this order parameter captures well the order-disorder transitions occurring in these systems. We fabricate real DNA origami rotors which themselves can order
via
programmable DNA base-pairing interactions and demonstrate both ordered and disordered phases, illustrating how rotor lattices may be realized experimentally and used for responsive organization. This work establishes the feasibility of realizing structural nanomaterials that exhibit locally mediated microscale patterns which could have applications in sensing and precision surface patterning.
In this work, we describe the development of a computational model for arrays of rotary DNA origami elements which can self-organize on a large scale and explore the interesting morphologies and order-disorder transition behavior of these systems.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d2nr05813h</identifier><identifier>PMID: 37092294</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Arrays ; Closed loops ; Design parameters ; Lattices ; Low temperature ; Nanomaterials ; Order parameters ; Patterning ; Rotors ; Spinning (materials)</subject><ispartof>Nanoscale, 2023-05, Vol.15 (18), p.8356-8365</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-77a5b96197c1f6d43509bf6d5f1f5d57c2e3c4aaf9418d579974ea66c9f5d7883</citedby><cites>FETCH-LOGICAL-c373t-77a5b96197c1f6d43509bf6d5f1f5d57c2e3c4aaf9418d579974ea66c9f5d7883</cites><orcidid>0000-0002-4299-3501 ; 0000-0002-5615-0521 ; 0000-0002-5589-8415 ; 0000-0002-1563-5792 ; 0000-0001-7023-6105</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37092294$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>DeLuca, Marcello</creatorcontrib><creatorcontrib>Pfeifer, Wolfgang G</creatorcontrib><creatorcontrib>Randoing, Benjamin</creatorcontrib><creatorcontrib>Huang, Chao-Min</creatorcontrib><creatorcontrib>Poirier, Michael G</creatorcontrib><creatorcontrib>Castro, Carlos E</creatorcontrib><creatorcontrib>Arya, Gaurav</creatorcontrib><title>Thermally reversible pattern formation in arrays of molecular rotors</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>Control over the mesoscale to microscale patterning of materials is of great interest to the soft matter community. Inspired by DNA origami rotors, we introduce a 2D nearest-neighbor lattice of spinning rotors that exhibit discrete orientational states and interactions with their neighbors. Monte Carlo simulations of rotor lattices reveal that they exhibit a variety of interesting ordering behaviors and morphologies that can be modulated through rotor design parameters. The rotor arrays exhibit diverse patterns including closed loops, radiating loops, and bricklayer structures in their ordered states. They exhibit specific heat peaks at very low temperatures for small system sizes, and some systems exhibit multiple order-disorder transitions depending on inter-rotor interaction design. We devise an energy-based order parameter and show
via
umbrella sampling and histogram reweighting that this order parameter captures well the order-disorder transitions occurring in these systems. We fabricate real DNA origami rotors which themselves can order
via
programmable DNA base-pairing interactions and demonstrate both ordered and disordered phases, illustrating how rotor lattices may be realized experimentally and used for responsive organization. This work establishes the feasibility of realizing structural nanomaterials that exhibit locally mediated microscale patterns which could have applications in sensing and precision surface patterning.
In this work, we describe the development of a computational model for arrays of rotary DNA origami elements which can self-organize on a large scale and explore the interesting morphologies and order-disorder transition behavior of these systems.</description><subject>Arrays</subject><subject>Closed loops</subject><subject>Design parameters</subject><subject>Lattices</subject><subject>Low temperature</subject><subject>Nanomaterials</subject><subject>Order parameters</subject><subject>Patterning</subject><subject>Rotors</subject><subject>Spinning (materials)</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpd0c1LwzAYBvAgipvTi3el4EWEar7THGVTJwwFmeeSZinraJv5phX23xvdnOApb3h-vIQnCJ0TfEsw03cL2gIWGWHLAzSkmOOUMUUP97PkA3QSwgpjqZlkx2jAFNaUaj5Ek_nSQWPqepOA-3QQqqJ2ydp0nYM2KX3Musq3SdUmBsBsQuLLpPG1s31tIAHfeQin6Kg0dXBnu3OE3h8f5uNpOnt9eh7fz1LLFOtSpYwotCRaWVLKBWcC6yIOoiSlWAhlqWOWG1NqTrJ411pxZ6S0OsYqy9gIXW_3rsF_9C50eVMF6-ratM73IacZFoJkXJJIr_7Rle-hja-LikSDacajutkqCz4EcGW-hqoxsMkJzr-7zSf05e2n22nEl7uVfdG4xZ7-lhnBxRZAsPv073PYF4y9fYY</recordid><startdate>20230511</startdate><enddate>20230511</enddate><creator>DeLuca, Marcello</creator><creator>Pfeifer, Wolfgang G</creator><creator>Randoing, Benjamin</creator><creator>Huang, Chao-Min</creator><creator>Poirier, Michael G</creator><creator>Castro, Carlos E</creator><creator>Arya, Gaurav</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4299-3501</orcidid><orcidid>https://orcid.org/0000-0002-5615-0521</orcidid><orcidid>https://orcid.org/0000-0002-5589-8415</orcidid><orcidid>https://orcid.org/0000-0002-1563-5792</orcidid><orcidid>https://orcid.org/0000-0001-7023-6105</orcidid></search><sort><creationdate>20230511</creationdate><title>Thermally reversible pattern formation in arrays of molecular rotors</title><author>DeLuca, Marcello ; Pfeifer, Wolfgang G ; Randoing, Benjamin ; Huang, Chao-Min ; Poirier, Michael G ; Castro, Carlos E ; Arya, Gaurav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-77a5b96197c1f6d43509bf6d5f1f5d57c2e3c4aaf9418d579974ea66c9f5d7883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Arrays</topic><topic>Closed loops</topic><topic>Design parameters</topic><topic>Lattices</topic><topic>Low temperature</topic><topic>Nanomaterials</topic><topic>Order parameters</topic><topic>Patterning</topic><topic>Rotors</topic><topic>Spinning (materials)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DeLuca, Marcello</creatorcontrib><creatorcontrib>Pfeifer, Wolfgang G</creatorcontrib><creatorcontrib>Randoing, Benjamin</creatorcontrib><creatorcontrib>Huang, Chao-Min</creatorcontrib><creatorcontrib>Poirier, Michael G</creatorcontrib><creatorcontrib>Castro, Carlos E</creatorcontrib><creatorcontrib>Arya, Gaurav</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DeLuca, Marcello</au><au>Pfeifer, Wolfgang G</au><au>Randoing, Benjamin</au><au>Huang, Chao-Min</au><au>Poirier, Michael G</au><au>Castro, Carlos E</au><au>Arya, Gaurav</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermally reversible pattern formation in arrays of molecular rotors</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2023-05-11</date><risdate>2023</risdate><volume>15</volume><issue>18</issue><spage>8356</spage><epage>8365</epage><pages>8356-8365</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Control over the mesoscale to microscale patterning of materials is of great interest to the soft matter community. Inspired by DNA origami rotors, we introduce a 2D nearest-neighbor lattice of spinning rotors that exhibit discrete orientational states and interactions with their neighbors. Monte Carlo simulations of rotor lattices reveal that they exhibit a variety of interesting ordering behaviors and morphologies that can be modulated through rotor design parameters. The rotor arrays exhibit diverse patterns including closed loops, radiating loops, and bricklayer structures in their ordered states. They exhibit specific heat peaks at very low temperatures for small system sizes, and some systems exhibit multiple order-disorder transitions depending on inter-rotor interaction design. We devise an energy-based order parameter and show
via
umbrella sampling and histogram reweighting that this order parameter captures well the order-disorder transitions occurring in these systems. We fabricate real DNA origami rotors which themselves can order
via
programmable DNA base-pairing interactions and demonstrate both ordered and disordered phases, illustrating how rotor lattices may be realized experimentally and used for responsive organization. This work establishes the feasibility of realizing structural nanomaterials that exhibit locally mediated microscale patterns which could have applications in sensing and precision surface patterning.
In this work, we describe the development of a computational model for arrays of rotary DNA origami elements which can self-organize on a large scale and explore the interesting morphologies and order-disorder transition behavior of these systems.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>37092294</pmid><doi>10.1039/d2nr05813h</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-4299-3501</orcidid><orcidid>https://orcid.org/0000-0002-5615-0521</orcidid><orcidid>https://orcid.org/0000-0002-5589-8415</orcidid><orcidid>https://orcid.org/0000-0002-1563-5792</orcidid><orcidid>https://orcid.org/0000-0001-7023-6105</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-3364 |
ispartof | Nanoscale, 2023-05, Vol.15 (18), p.8356-8365 |
issn | 2040-3364 2040-3372 |
language | eng |
recordid | cdi_proquest_journals_2811840284 |
source | Royal Society Of Chemistry Journals |
subjects | Arrays Closed loops Design parameters Lattices Low temperature Nanomaterials Order parameters Patterning Rotors Spinning (materials) |
title | Thermally reversible pattern formation in arrays of molecular rotors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T01%3A16%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermally%20reversible%20pattern%20formation%20in%20arrays%20of%20molecular%20rotors&rft.jtitle=Nanoscale&rft.au=DeLuca,%20Marcello&rft.date=2023-05-11&rft.volume=15&rft.issue=18&rft.spage=8356&rft.epage=8365&rft.pages=8356-8365&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d2nr05813h&rft_dat=%3Cproquest_pubme%3E2805518461%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2811840284&rft_id=info:pmid/37092294&rfr_iscdi=true |