Phytoglycogen-dsRNA nanoparticles demonstrate differential cytotoxicity and immunostimulatory potential in two ovarian cancer cell lines
Ovarian cancer is a leading cause of cancer mortality in women, and novel treatments with improved efficacy are needed to fight ovarian cancer. Double-stranded (ds) RNA, including the synthetic polyinosinic cytidylic acid (poly (I:C), has shown promise as a cancer therapeutic. Phytoglycogen derived...
Gespeichert in:
Veröffentlicht in: | Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology 2023-06, Vol.25 (6), p.104, Article 104 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | 104 |
container_title | Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology |
container_volume | 25 |
creator | Lewis, A. Tran, A. Aldor, N. L. Jadaa, N. A. Feng, T. Moore, E. DeWitte-Orr, S. J. Poynter, S. J. |
description | Ovarian cancer is a leading cause of cancer mortality in women, and novel treatments with improved efficacy are needed to fight ovarian cancer. Double-stranded (ds) RNA, including the synthetic polyinosinic cytidylic acid (poly (I:C), has shown promise as a cancer therapeutic. Phytoglycogen derived from sweet corn, nanodendrix (NDX) is a carrier for dsRNA. The responsiveness to NDX-delivered poly (I:C), NDX-poly (I:C), was tested in two ovarian cancer cell lines, SKOV-3 and OVCAR-3, previously identified as dsRNA-resistant and dsRNA-sensitive, respectively. NDX bound poly (I:C) at a w/w ratio of 2:1 NDX:poly (I:C) and poly (I:C)-NDX was tested for biological activity through uptake and two therapeutic modes of action, cytotoxicity, and immune stimulation. Immunocytochemistry demonstrated both cells bound to poly (I:C)-NDX. In OVCAR-3, poly (I:C)-NDX caused significant cell death, even at concentrations as low as 62.5 ng/mL; no cell death was observed with poly (I:C) alone at concentrations up to 5 μg/mL in SKOV-3 and 0.5 μg/mL in OVCAR-3. In both cell lines poly (I:C)-NDX stimulated the production of CXCL10 protein and transcripts, an innate immune chemokine, and at significantly higher levels than poly (I:C) alone. Interestingly, in response to poly (I:C)-NDX SKOV-3 produced a more robust immune response and higher levels of capase-3/-7 activation compared to OVCAR-3, despite showing no significant cell death. Poly (I:C)-NDX represents a robust and multifunctional therapy, potentiating poly (I:C) and sensitizing resistant cells. Additionally, the SKOV-3 and OVCAR-3 combination represents a powerful comparative model to help unravel dsRNA-mediated immune responses in ovarian cancer cells. |
doi_str_mv | 10.1007/s11051-023-05758-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2811778186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2811778186</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-61a3a023af4b8ff58e74ba6dd4ec912521a00b0eaf2703d9b4b2707977d62aa03</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhQdRsFZfwFXAdTTJ_CSzLMU_KCqi4C7cyWRqykxSk1SdN_CxjbbgztU9i--ce-_JslNKzikh_CJQSkqKCcsxKXkpMN_LJrTkDIu6etlPOhcCE14Vh9lRCCtCaMVqNsm-Hl7H6Jb9qNxSW9yGx7sZsmDdGnw0qtcBtXpwNkQPUaPWdJ322kYDPVLJGd2nUSaOCGyLzDBsrAvRDJseovMjWru4g41F8cMh9w7egEUKrNIeKd33qDdWh-PsoIM-6JPdnGbPV5dP8xu8uL--nc8WWOVVHnFFIYf0JnRFI7quFJoXDVRtW2hVU1YyCoQ0REPHOMnbuimaJHjNeVsxAJJPs7Nt7tq7t40OUa7cxtu0UjJBKeeCiipRbEsp70LwupNrbwbwo6RE_jQut43LdIr8bVzyZMq3ppBgu9T-L_of1zdCpYhS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2811778186</pqid></control><display><type>article</type><title>Phytoglycogen-dsRNA nanoparticles demonstrate differential cytotoxicity and immunostimulatory potential in two ovarian cancer cell lines</title><source>Springer Nature - Complete Springer Journals</source><creator>Lewis, A. ; Tran, A. ; Aldor, N. L. ; Jadaa, N. A. ; Feng, T. ; Moore, E. ; DeWitte-Orr, S. J. ; Poynter, S. J.</creator><creatorcontrib>Lewis, A. ; Tran, A. ; Aldor, N. L. ; Jadaa, N. A. ; Feng, T. ; Moore, E. ; DeWitte-Orr, S. J. ; Poynter, S. J.</creatorcontrib><description>Ovarian cancer is a leading cause of cancer mortality in women, and novel treatments with improved efficacy are needed to fight ovarian cancer. Double-stranded (ds) RNA, including the synthetic polyinosinic cytidylic acid (poly (I:C), has shown promise as a cancer therapeutic. Phytoglycogen derived from sweet corn, nanodendrix (NDX) is a carrier for dsRNA. The responsiveness to NDX-delivered poly (I:C), NDX-poly (I:C), was tested in two ovarian cancer cell lines, SKOV-3 and OVCAR-3, previously identified as dsRNA-resistant and dsRNA-sensitive, respectively. NDX bound poly (I:C) at a w/w ratio of 2:1 NDX:poly (I:C) and poly (I:C)-NDX was tested for biological activity through uptake and two therapeutic modes of action, cytotoxicity, and immune stimulation. Immunocytochemistry demonstrated both cells bound to poly (I:C)-NDX. In OVCAR-3, poly (I:C)-NDX caused significant cell death, even at concentrations as low as 62.5 ng/mL; no cell death was observed with poly (I:C) alone at concentrations up to 5 μg/mL in SKOV-3 and 0.5 μg/mL in OVCAR-3. In both cell lines poly (I:C)-NDX stimulated the production of CXCL10 protein and transcripts, an innate immune chemokine, and at significantly higher levels than poly (I:C) alone. Interestingly, in response to poly (I:C)-NDX SKOV-3 produced a more robust immune response and higher levels of capase-3/-7 activation compared to OVCAR-3, despite showing no significant cell death. Poly (I:C)-NDX represents a robust and multifunctional therapy, potentiating poly (I:C) and sensitizing resistant cells. Additionally, the SKOV-3 and OVCAR-3 combination represents a powerful comparative model to help unravel dsRNA-mediated immune responses in ovarian cancer cells.</description><identifier>ISSN: 1388-0764</identifier><identifier>EISSN: 1572-896X</identifier><identifier>DOI: 10.1007/s11051-023-05758-7</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Apoptosis ; Biological activity ; Cancer ; Cell death ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Chemokines ; CXCL10 protein ; Cytidylic acid ; Cytotoxicity ; Double-stranded RNA ; Immune response ; Immune system ; Immunocytochemistry ; Immunostimulation ; Inorganic Chemistry ; Lasers ; Materials Science ; Mortality ; Nanoparticles ; Nanotechnology ; Optical Devices ; Optics ; Ovarian cancer ; Photonics ; Physical Chemistry ; Polyinosinic:polycytidylic acid ; Research Paper ; Robustness ; Sensitizing ; Sweetcorn ; Toxicity ; Tumor cell lines</subject><ispartof>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology, 2023-06, Vol.25 (6), p.104, Article 104</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-61a3a023af4b8ff58e74ba6dd4ec912521a00b0eaf2703d9b4b2707977d62aa03</citedby><cites>FETCH-LOGICAL-c363t-61a3a023af4b8ff58e74ba6dd4ec912521a00b0eaf2703d9b4b2707977d62aa03</cites><orcidid>0000-0002-7053-3705 ; 0000-0002-7063-7504 ; 0000-0001-9806-7470</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11051-023-05758-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11051-023-05758-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Lewis, A.</creatorcontrib><creatorcontrib>Tran, A.</creatorcontrib><creatorcontrib>Aldor, N. L.</creatorcontrib><creatorcontrib>Jadaa, N. A.</creatorcontrib><creatorcontrib>Feng, T.</creatorcontrib><creatorcontrib>Moore, E.</creatorcontrib><creatorcontrib>DeWitte-Orr, S. J.</creatorcontrib><creatorcontrib>Poynter, S. J.</creatorcontrib><title>Phytoglycogen-dsRNA nanoparticles demonstrate differential cytotoxicity and immunostimulatory potential in two ovarian cancer cell lines</title><title>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology</title><addtitle>J Nanopart Res</addtitle><description>Ovarian cancer is a leading cause of cancer mortality in women, and novel treatments with improved efficacy are needed to fight ovarian cancer. Double-stranded (ds) RNA, including the synthetic polyinosinic cytidylic acid (poly (I:C), has shown promise as a cancer therapeutic. Phytoglycogen derived from sweet corn, nanodendrix (NDX) is a carrier for dsRNA. The responsiveness to NDX-delivered poly (I:C), NDX-poly (I:C), was tested in two ovarian cancer cell lines, SKOV-3 and OVCAR-3, previously identified as dsRNA-resistant and dsRNA-sensitive, respectively. NDX bound poly (I:C) at a w/w ratio of 2:1 NDX:poly (I:C) and poly (I:C)-NDX was tested for biological activity through uptake and two therapeutic modes of action, cytotoxicity, and immune stimulation. Immunocytochemistry demonstrated both cells bound to poly (I:C)-NDX. In OVCAR-3, poly (I:C)-NDX caused significant cell death, even at concentrations as low as 62.5 ng/mL; no cell death was observed with poly (I:C) alone at concentrations up to 5 μg/mL in SKOV-3 and 0.5 μg/mL in OVCAR-3. In both cell lines poly (I:C)-NDX stimulated the production of CXCL10 protein and transcripts, an innate immune chemokine, and at significantly higher levels than poly (I:C) alone. Interestingly, in response to poly (I:C)-NDX SKOV-3 produced a more robust immune response and higher levels of capase-3/-7 activation compared to OVCAR-3, despite showing no significant cell death. Poly (I:C)-NDX represents a robust and multifunctional therapy, potentiating poly (I:C) and sensitizing resistant cells. Additionally, the SKOV-3 and OVCAR-3 combination represents a powerful comparative model to help unravel dsRNA-mediated immune responses in ovarian cancer cells.</description><subject>Apoptosis</subject><subject>Biological activity</subject><subject>Cancer</subject><subject>Cell death</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Chemokines</subject><subject>CXCL10 protein</subject><subject>Cytidylic acid</subject><subject>Cytotoxicity</subject><subject>Double-stranded RNA</subject><subject>Immune response</subject><subject>Immune system</subject><subject>Immunocytochemistry</subject><subject>Immunostimulation</subject><subject>Inorganic Chemistry</subject><subject>Lasers</subject><subject>Materials Science</subject><subject>Mortality</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Ovarian cancer</subject><subject>Photonics</subject><subject>Physical Chemistry</subject><subject>Polyinosinic:polycytidylic acid</subject><subject>Research Paper</subject><subject>Robustness</subject><subject>Sensitizing</subject><subject>Sweetcorn</subject><subject>Toxicity</subject><subject>Tumor cell lines</subject><issn>1388-0764</issn><issn>1572-896X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kM1KAzEUhQdRsFZfwFXAdTTJ_CSzLMU_KCqi4C7cyWRqykxSk1SdN_CxjbbgztU9i--ce-_JslNKzikh_CJQSkqKCcsxKXkpMN_LJrTkDIu6etlPOhcCE14Vh9lRCCtCaMVqNsm-Hl7H6Jb9qNxSW9yGx7sZsmDdGnw0qtcBtXpwNkQPUaPWdJ322kYDPVLJGd2nUSaOCGyLzDBsrAvRDJseovMjWru4g41F8cMh9w7egEUKrNIeKd33qDdWh-PsoIM-6JPdnGbPV5dP8xu8uL--nc8WWOVVHnFFIYf0JnRFI7quFJoXDVRtW2hVU1YyCoQ0REPHOMnbuimaJHjNeVsxAJJPs7Nt7tq7t40OUa7cxtu0UjJBKeeCiipRbEsp70LwupNrbwbwo6RE_jQut43LdIr8bVzyZMq3ppBgu9T-L_of1zdCpYhS</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Lewis, A.</creator><creator>Tran, A.</creator><creator>Aldor, N. L.</creator><creator>Jadaa, N. A.</creator><creator>Feng, T.</creator><creator>Moore, E.</creator><creator>DeWitte-Orr, S. J.</creator><creator>Poynter, S. J.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-7053-3705</orcidid><orcidid>https://orcid.org/0000-0002-7063-7504</orcidid><orcidid>https://orcid.org/0000-0001-9806-7470</orcidid></search><sort><creationdate>20230601</creationdate><title>Phytoglycogen-dsRNA nanoparticles demonstrate differential cytotoxicity and immunostimulatory potential in two ovarian cancer cell lines</title><author>Lewis, A. ; Tran, A. ; Aldor, N. L. ; Jadaa, N. A. ; Feng, T. ; Moore, E. ; DeWitte-Orr, S. J. ; Poynter, S. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-61a3a023af4b8ff58e74ba6dd4ec912521a00b0eaf2703d9b4b2707977d62aa03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Apoptosis</topic><topic>Biological activity</topic><topic>Cancer</topic><topic>Cell death</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Chemokines</topic><topic>CXCL10 protein</topic><topic>Cytidylic acid</topic><topic>Cytotoxicity</topic><topic>Double-stranded RNA</topic><topic>Immune response</topic><topic>Immune system</topic><topic>Immunocytochemistry</topic><topic>Immunostimulation</topic><topic>Inorganic Chemistry</topic><topic>Lasers</topic><topic>Materials Science</topic><topic>Mortality</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Ovarian cancer</topic><topic>Photonics</topic><topic>Physical Chemistry</topic><topic>Polyinosinic:polycytidylic acid</topic><topic>Research Paper</topic><topic>Robustness</topic><topic>Sensitizing</topic><topic>Sweetcorn</topic><topic>Toxicity</topic><topic>Tumor cell lines</topic><toplevel>online_resources</toplevel><creatorcontrib>Lewis, A.</creatorcontrib><creatorcontrib>Tran, A.</creatorcontrib><creatorcontrib>Aldor, N. L.</creatorcontrib><creatorcontrib>Jadaa, N. A.</creatorcontrib><creatorcontrib>Feng, T.</creatorcontrib><creatorcontrib>Moore, E.</creatorcontrib><creatorcontrib>DeWitte-Orr, S. J.</creatorcontrib><creatorcontrib>Poynter, S. J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lewis, A.</au><au>Tran, A.</au><au>Aldor, N. L.</au><au>Jadaa, N. A.</au><au>Feng, T.</au><au>Moore, E.</au><au>DeWitte-Orr, S. J.</au><au>Poynter, S. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phytoglycogen-dsRNA nanoparticles demonstrate differential cytotoxicity and immunostimulatory potential in two ovarian cancer cell lines</atitle><jtitle>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology</jtitle><stitle>J Nanopart Res</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>25</volume><issue>6</issue><spage>104</spage><pages>104-</pages><artnum>104</artnum><issn>1388-0764</issn><eissn>1572-896X</eissn><abstract>Ovarian cancer is a leading cause of cancer mortality in women, and novel treatments with improved efficacy are needed to fight ovarian cancer. Double-stranded (ds) RNA, including the synthetic polyinosinic cytidylic acid (poly (I:C), has shown promise as a cancer therapeutic. Phytoglycogen derived from sweet corn, nanodendrix (NDX) is a carrier for dsRNA. The responsiveness to NDX-delivered poly (I:C), NDX-poly (I:C), was tested in two ovarian cancer cell lines, SKOV-3 and OVCAR-3, previously identified as dsRNA-resistant and dsRNA-sensitive, respectively. NDX bound poly (I:C) at a w/w ratio of 2:1 NDX:poly (I:C) and poly (I:C)-NDX was tested for biological activity through uptake and two therapeutic modes of action, cytotoxicity, and immune stimulation. Immunocytochemistry demonstrated both cells bound to poly (I:C)-NDX. In OVCAR-3, poly (I:C)-NDX caused significant cell death, even at concentrations as low as 62.5 ng/mL; no cell death was observed with poly (I:C) alone at concentrations up to 5 μg/mL in SKOV-3 and 0.5 μg/mL in OVCAR-3. In both cell lines poly (I:C)-NDX stimulated the production of CXCL10 protein and transcripts, an innate immune chemokine, and at significantly higher levels than poly (I:C) alone. Interestingly, in response to poly (I:C)-NDX SKOV-3 produced a more robust immune response and higher levels of capase-3/-7 activation compared to OVCAR-3, despite showing no significant cell death. Poly (I:C)-NDX represents a robust and multifunctional therapy, potentiating poly (I:C) and sensitizing resistant cells. Additionally, the SKOV-3 and OVCAR-3 combination represents a powerful comparative model to help unravel dsRNA-mediated immune responses in ovarian cancer cells.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11051-023-05758-7</doi><orcidid>https://orcid.org/0000-0002-7053-3705</orcidid><orcidid>https://orcid.org/0000-0002-7063-7504</orcidid><orcidid>https://orcid.org/0000-0001-9806-7470</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1388-0764 |
ispartof | Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology, 2023-06, Vol.25 (6), p.104, Article 104 |
issn | 1388-0764 1572-896X |
language | eng |
recordid | cdi_proquest_journals_2811778186 |
source | Springer Nature - Complete Springer Journals |
subjects | Apoptosis Biological activity Cancer Cell death Characterization and Evaluation of Materials Chemistry and Materials Science Chemokines CXCL10 protein Cytidylic acid Cytotoxicity Double-stranded RNA Immune response Immune system Immunocytochemistry Immunostimulation Inorganic Chemistry Lasers Materials Science Mortality Nanoparticles Nanotechnology Optical Devices Optics Ovarian cancer Photonics Physical Chemistry Polyinosinic:polycytidylic acid Research Paper Robustness Sensitizing Sweetcorn Toxicity Tumor cell lines |
title | Phytoglycogen-dsRNA nanoparticles demonstrate differential cytotoxicity and immunostimulatory potential in two ovarian cancer cell lines |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T14%3A58%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phytoglycogen-dsRNA%20nanoparticles%20demonstrate%20differential%20cytotoxicity%20and%20immunostimulatory%20potential%20in%20two%20ovarian%20cancer%20cell%20lines&rft.jtitle=Journal%20of%20nanoparticle%20research%20:%20an%20interdisciplinary%20forum%20for%20nanoscale%20science%20and%20technology&rft.au=Lewis,%20A.&rft.date=2023-06-01&rft.volume=25&rft.issue=6&rft.spage=104&rft.pages=104-&rft.artnum=104&rft.issn=1388-0764&rft.eissn=1572-896X&rft_id=info:doi/10.1007/s11051-023-05758-7&rft_dat=%3Cproquest_cross%3E2811778186%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2811778186&rft_id=info:pmid/&rfr_iscdi=true |