Photonic Binary Convolutional Neural Network Based on Microring Resonator Array

We propose the photonic architecture based on microring resonator (MRR) arrays for binary convolutional neural networks (BCNNs) accelerated computing. The MRR crossbar unit is used for computing weight {-1, 1} and the single MRR is for input {0, 1}. The computing parallelism is improved through wave...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE photonics technology letters 2023-06, Vol.35 (12), p.1-1
Hauptverfasser: Wang, Ruiting, Wang, Pengfei, Lyu, Chen, Luo, Guangzhen, Ma, Jianbin, Zhou, Xuliang, Zhang, Yejin, Pan, Jiaoqing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 12
container_start_page 1
container_title IEEE photonics technology letters
container_volume 35
creator Wang, Ruiting
Wang, Pengfei
Lyu, Chen
Luo, Guangzhen
Ma, Jianbin
Zhou, Xuliang
Zhang, Yejin
Pan, Jiaoqing
description We propose the photonic architecture based on microring resonator (MRR) arrays for binary convolutional neural networks (BCNNs) accelerated computing. The MRR crossbar unit is used for computing weight {-1, 1} and the single MRR is for input {0, 1}. The computing parallelism is improved through wavelength division multiplexing. The photonic BCNN achieves 97.29% classification accuracy on the MNIST test set which is only 1.94% lower than the accuracy of the 32-bit neural network, and saves 32× at memory usage. We analyze effects of input and weight encoding errors on the photonic BCNN. When the input or weight error rate is less than 0.01%, the test accuracy remains unchanged. We evaluate the performance of the photonic BCNN architecture considering optical loss, inter-channel crosstalk, operation frequency and device power consumption. The energy efficiency of the designed photonic BCNN architecture is 1.72 pJ/MAC, which is 4.80× and 61.32× better than the 8-bit and 16-bit architecture respectively. The photonic BCNN is promising to be used for edge computing.
doi_str_mv 10.1109/LPT.2023.3272148
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2811730536</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10113659</ieee_id><sourcerecordid>2811730536</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-5ca8ad188b5ea339ca4b94bd4956afef63a46cd68badebdb6046944ef17b7af63</originalsourceid><addsrcrecordid>eNpNkEtPwzAQhC0EEqVw58DBEucUr1-Jj23FSyq0QuVs2YkDKSUudgLqv8elPXCakXZmtfshdAlkBEDUzWyxHFFC2YjRnAIvjtAAFIeMQM6PkyfJAzBxis5iXBECXDA-QPPFu-9825R40rQmbPHUt99-3XeNb80aP7s-_En348MHnpjoKuxb_NSUwYemfcMvLqZk5wMeh2C25-ikNuvoLg46RK93t8vpQzab3z9Ox7OspIp2mShNYSooCiucYUyVhlvFbcWVkKZ2tWSGy7KShTWVs5WVhEvFuasht7lJ4yG63u_dBP_Vu9jple9DOjlqWgDkjAi2S5F9Kl0bY3C13oTmM72pgegdNp2w6R02fcCWKlf7SuOc-xdP7KRQ7Bcj1GoW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2811730536</pqid></control><display><type>article</type><title>Photonic Binary Convolutional Neural Network Based on Microring Resonator Array</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Ruiting ; Wang, Pengfei ; Lyu, Chen ; Luo, Guangzhen ; Ma, Jianbin ; Zhou, Xuliang ; Zhang, Yejin ; Pan, Jiaoqing</creator><creatorcontrib>Wang, Ruiting ; Wang, Pengfei ; Lyu, Chen ; Luo, Guangzhen ; Ma, Jianbin ; Zhou, Xuliang ; Zhang, Yejin ; Pan, Jiaoqing</creatorcontrib><description>We propose the photonic architecture based on microring resonator (MRR) arrays for binary convolutional neural networks (BCNNs) accelerated computing. The MRR crossbar unit is used for computing weight {-1, 1} and the single MRR is for input {0, 1}. The computing parallelism is improved through wavelength division multiplexing. The photonic BCNN achieves 97.29% classification accuracy on the MNIST test set which is only 1.94% lower than the accuracy of the 32-bit neural network, and saves 32× at memory usage. We analyze effects of input and weight encoding errors on the photonic BCNN. When the input or weight error rate is less than 0.01%, the test accuracy remains unchanged. We evaluate the performance of the photonic BCNN architecture considering optical loss, inter-channel crosstalk, operation frequency and device power consumption. The energy efficiency of the designed photonic BCNN architecture is 1.72 pJ/MAC, which is 4.80× and 61.32× better than the 8-bit and 16-bit architecture respectively. The photonic BCNN is promising to be used for edge computing.</description><identifier>ISSN: 1041-1135</identifier><identifier>EISSN: 1941-0174</identifier><identifier>DOI: 10.1109/LPT.2023.3272148</identifier><identifier>CODEN: IPTLEL</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Arrays ; Artificial neural networks ; binary neural network ; Computer architecture ; Computer networks ; Convolution ; Crosstalk ; Edge computing ; Kernel ; microring resonator array ; Neural networks ; Optical losses ; Optical resonators ; Optical waveguides ; Photonic neural network ; Photonics ; Power consumption ; Resonators ; Wavelength division multiplexing</subject><ispartof>IEEE photonics technology letters, 2023-06, Vol.35 (12), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-5ca8ad188b5ea339ca4b94bd4956afef63a46cd68badebdb6046944ef17b7af63</citedby><cites>FETCH-LOGICAL-c292t-5ca8ad188b5ea339ca4b94bd4956afef63a46cd68badebdb6046944ef17b7af63</cites><orcidid>0000-0001-9874-3803 ; 0000-0003-4701-9561 ; 0000-0001-7426-199X ; 0000-0001-9932-9372 ; 0000-0002-2306-0730</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10113659$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10113659$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Ruiting</creatorcontrib><creatorcontrib>Wang, Pengfei</creatorcontrib><creatorcontrib>Lyu, Chen</creatorcontrib><creatorcontrib>Luo, Guangzhen</creatorcontrib><creatorcontrib>Ma, Jianbin</creatorcontrib><creatorcontrib>Zhou, Xuliang</creatorcontrib><creatorcontrib>Zhang, Yejin</creatorcontrib><creatorcontrib>Pan, Jiaoqing</creatorcontrib><title>Photonic Binary Convolutional Neural Network Based on Microring Resonator Array</title><title>IEEE photonics technology letters</title><addtitle>LPT</addtitle><description>We propose the photonic architecture based on microring resonator (MRR) arrays for binary convolutional neural networks (BCNNs) accelerated computing. The MRR crossbar unit is used for computing weight {-1, 1} and the single MRR is for input {0, 1}. The computing parallelism is improved through wavelength division multiplexing. The photonic BCNN achieves 97.29% classification accuracy on the MNIST test set which is only 1.94% lower than the accuracy of the 32-bit neural network, and saves 32× at memory usage. We analyze effects of input and weight encoding errors on the photonic BCNN. When the input or weight error rate is less than 0.01%, the test accuracy remains unchanged. We evaluate the performance of the photonic BCNN architecture considering optical loss, inter-channel crosstalk, operation frequency and device power consumption. The energy efficiency of the designed photonic BCNN architecture is 1.72 pJ/MAC, which is 4.80× and 61.32× better than the 8-bit and 16-bit architecture respectively. The photonic BCNN is promising to be used for edge computing.</description><subject>Accuracy</subject><subject>Arrays</subject><subject>Artificial neural networks</subject><subject>binary neural network</subject><subject>Computer architecture</subject><subject>Computer networks</subject><subject>Convolution</subject><subject>Crosstalk</subject><subject>Edge computing</subject><subject>Kernel</subject><subject>microring resonator array</subject><subject>Neural networks</subject><subject>Optical losses</subject><subject>Optical resonators</subject><subject>Optical waveguides</subject><subject>Photonic neural network</subject><subject>Photonics</subject><subject>Power consumption</subject><subject>Resonators</subject><subject>Wavelength division multiplexing</subject><issn>1041-1135</issn><issn>1941-0174</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEtPwzAQhC0EEqVw58DBEucUr1-Jj23FSyq0QuVs2YkDKSUudgLqv8elPXCakXZmtfshdAlkBEDUzWyxHFFC2YjRnAIvjtAAFIeMQM6PkyfJAzBxis5iXBECXDA-QPPFu-9825R40rQmbPHUt99-3XeNb80aP7s-_En348MHnpjoKuxb_NSUwYemfcMvLqZk5wMeh2C25-ikNuvoLg46RK93t8vpQzab3z9Ox7OspIp2mShNYSooCiucYUyVhlvFbcWVkKZ2tWSGy7KShTWVs5WVhEvFuasht7lJ4yG63u_dBP_Vu9jple9DOjlqWgDkjAi2S5F9Kl0bY3C13oTmM72pgegdNp2w6R02fcCWKlf7SuOc-xdP7KRQ7Bcj1GoW</recordid><startdate>20230615</startdate><enddate>20230615</enddate><creator>Wang, Ruiting</creator><creator>Wang, Pengfei</creator><creator>Lyu, Chen</creator><creator>Luo, Guangzhen</creator><creator>Ma, Jianbin</creator><creator>Zhou, Xuliang</creator><creator>Zhang, Yejin</creator><creator>Pan, Jiaoqing</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9874-3803</orcidid><orcidid>https://orcid.org/0000-0003-4701-9561</orcidid><orcidid>https://orcid.org/0000-0001-7426-199X</orcidid><orcidid>https://orcid.org/0000-0001-9932-9372</orcidid><orcidid>https://orcid.org/0000-0002-2306-0730</orcidid></search><sort><creationdate>20230615</creationdate><title>Photonic Binary Convolutional Neural Network Based on Microring Resonator Array</title><author>Wang, Ruiting ; Wang, Pengfei ; Lyu, Chen ; Luo, Guangzhen ; Ma, Jianbin ; Zhou, Xuliang ; Zhang, Yejin ; Pan, Jiaoqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-5ca8ad188b5ea339ca4b94bd4956afef63a46cd68badebdb6046944ef17b7af63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Arrays</topic><topic>Artificial neural networks</topic><topic>binary neural network</topic><topic>Computer architecture</topic><topic>Computer networks</topic><topic>Convolution</topic><topic>Crosstalk</topic><topic>Edge computing</topic><topic>Kernel</topic><topic>microring resonator array</topic><topic>Neural networks</topic><topic>Optical losses</topic><topic>Optical resonators</topic><topic>Optical waveguides</topic><topic>Photonic neural network</topic><topic>Photonics</topic><topic>Power consumption</topic><topic>Resonators</topic><topic>Wavelength division multiplexing</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, Ruiting</creatorcontrib><creatorcontrib>Wang, Pengfei</creatorcontrib><creatorcontrib>Lyu, Chen</creatorcontrib><creatorcontrib>Luo, Guangzhen</creatorcontrib><creatorcontrib>Ma, Jianbin</creatorcontrib><creatorcontrib>Zhou, Xuliang</creatorcontrib><creatorcontrib>Zhang, Yejin</creatorcontrib><creatorcontrib>Pan, Jiaoqing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE photonics technology letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Ruiting</au><au>Wang, Pengfei</au><au>Lyu, Chen</au><au>Luo, Guangzhen</au><au>Ma, Jianbin</au><au>Zhou, Xuliang</au><au>Zhang, Yejin</au><au>Pan, Jiaoqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photonic Binary Convolutional Neural Network Based on Microring Resonator Array</atitle><jtitle>IEEE photonics technology letters</jtitle><stitle>LPT</stitle><date>2023-06-15</date><risdate>2023</risdate><volume>35</volume><issue>12</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1041-1135</issn><eissn>1941-0174</eissn><coden>IPTLEL</coden><abstract>We propose the photonic architecture based on microring resonator (MRR) arrays for binary convolutional neural networks (BCNNs) accelerated computing. The MRR crossbar unit is used for computing weight {-1, 1} and the single MRR is for input {0, 1}. The computing parallelism is improved through wavelength division multiplexing. The photonic BCNN achieves 97.29% classification accuracy on the MNIST test set which is only 1.94% lower than the accuracy of the 32-bit neural network, and saves 32× at memory usage. We analyze effects of input and weight encoding errors on the photonic BCNN. When the input or weight error rate is less than 0.01%, the test accuracy remains unchanged. We evaluate the performance of the photonic BCNN architecture considering optical loss, inter-channel crosstalk, operation frequency and device power consumption. The energy efficiency of the designed photonic BCNN architecture is 1.72 pJ/MAC, which is 4.80× and 61.32× better than the 8-bit and 16-bit architecture respectively. The photonic BCNN is promising to be used for edge computing.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LPT.2023.3272148</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9874-3803</orcidid><orcidid>https://orcid.org/0000-0003-4701-9561</orcidid><orcidid>https://orcid.org/0000-0001-7426-199X</orcidid><orcidid>https://orcid.org/0000-0001-9932-9372</orcidid><orcidid>https://orcid.org/0000-0002-2306-0730</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1041-1135
ispartof IEEE photonics technology letters, 2023-06, Vol.35 (12), p.1-1
issn 1041-1135
1941-0174
language eng
recordid cdi_proquest_journals_2811730536
source IEEE Electronic Library (IEL)
subjects Accuracy
Arrays
Artificial neural networks
binary neural network
Computer architecture
Computer networks
Convolution
Crosstalk
Edge computing
Kernel
microring resonator array
Neural networks
Optical losses
Optical resonators
Optical waveguides
Photonic neural network
Photonics
Power consumption
Resonators
Wavelength division multiplexing
title Photonic Binary Convolutional Neural Network Based on Microring Resonator Array
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T02%3A38%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photonic%20Binary%20Convolutional%20Neural%20Network%20Based%20on%20Microring%20Resonator%20Array&rft.jtitle=IEEE%20photonics%20technology%20letters&rft.au=Wang,%20Ruiting&rft.date=2023-06-15&rft.volume=35&rft.issue=12&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1041-1135&rft.eissn=1941-0174&rft.coden=IPTLEL&rft_id=info:doi/10.1109/LPT.2023.3272148&rft_dat=%3Cproquest_RIE%3E2811730536%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2811730536&rft_id=info:pmid/&rft_ieee_id=10113659&rfr_iscdi=true