DSM-assisted unsupervised domain adaptive network for semantic segmentation of remote sensing imagery
The semantic segmentation of high-resolution remote sensing imagery (RSI) is an essential task for many applications. As a promising unsupervised learning method, unsupervised domain adaptation (UDA) methods remarkably contribute to the advancement of high-resolution RSI semantic segmentation. Previ...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2023-01, Vol.61, p.1-1 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 61 |
creator | Zhou, Shunping Feng, Yuting Li, Shengwen Zheng, Daoyuan Fang, Fang Liu, Yuanyuan Wan, Bo |
description | The semantic segmentation of high-resolution remote sensing imagery (RSI) is an essential task for many applications. As a promising unsupervised learning method, unsupervised domain adaptation (UDA) methods remarkably contribute to the advancement of high-resolution RSI semantic segmentation. Previous methods focus on reducing domain shift of orthophotos, suffering from some limitations because the available information in orthophotos is relatively homogeneous. This paper proposes a framework to introduce digital surface model (DSM) data for the unsupervised semantic segmentation of RSI. The proposed method combines RSI with DSM through two modules, namely, multipath encoder (MPE) and multitask decoder (MTD), and aligns global data distribution in the source and target domains with a UDA module. A refined post fusion (RPF) module is proposed in the inference phase to exploit the height information fully for refining the segmentation results. Specifically, MPE is designed to utilize RSI and DSM to train the segmentation network jointly, which iteratively fuses RSI and DSM features at multiple levels to enhance their feature representations. MTD is designed to produce fusion prediction maps by filtering interference information of DSM and yielding accurate segmentation masks of DSM and RSI. Experimental results show that the proposed method substantially improves the semantic segmentation performance on high-resolution RSI and outperforms state-of-the-art methods. This paper provides a methodological reference for fusing multimodal data in various RSI-based unsupervised tasks. |
doi_str_mv | 10.1109/TGRS.2023.3268362 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2811729208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10105632</ieee_id><sourcerecordid>2811729208</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-e1291c5fedd6a4b90d96be7df430247f95067c70b8320e3f079495e165c9205f3</originalsourceid><addsrcrecordid>eNpNkMtKAzEUQIMoWKsfILgYcD01j0lmspSqVVAEW9chnbkpqU4yJmmlf29Ku3B1H5z74CB0TfCEECzvFrOP-YRiyiaMioYJeoJGhPOmxKKqTtEIEylK2kh6ji5iXGNMKk7qEYKH-VupY7QxQVdsXNwMELY25qLzvbau0J0ekt1C4SD9-vBVGB-KCL12ybY5WfXgkk7Wu8KbIkDvE-S2i9atCtvrFYTdJToz-jvC1TGO0efT42L6XL6-z16m969lS2WVSiBUkpYb6Dqhq6XEnRRLqDtTMUyr2kiORd3WeNkwioEZXMtKciCCt5JibtgY3R72DsH_bCAmtfab4PJJRRtCapqxJlPkQLXBxxjAqCHkR8NOEaz2NtXeptrbVEebeebmMGMB4B9PMBeMsj9Si3In</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2811729208</pqid></control><display><type>article</type><title>DSM-assisted unsupervised domain adaptive network for semantic segmentation of remote sensing imagery</title><source>IEEE Xplore</source><creator>Zhou, Shunping ; Feng, Yuting ; Li, Shengwen ; Zheng, Daoyuan ; Fang, Fang ; Liu, Yuanyuan ; Wan, Bo</creator><creatorcontrib>Zhou, Shunping ; Feng, Yuting ; Li, Shengwen ; Zheng, Daoyuan ; Fang, Fang ; Liu, Yuanyuan ; Wan, Bo</creatorcontrib><description>The semantic segmentation of high-resolution remote sensing imagery (RSI) is an essential task for many applications. As a promising unsupervised learning method, unsupervised domain adaptation (UDA) methods remarkably contribute to the advancement of high-resolution RSI semantic segmentation. Previous methods focus on reducing domain shift of orthophotos, suffering from some limitations because the available information in orthophotos is relatively homogeneous. This paper proposes a framework to introduce digital surface model (DSM) data for the unsupervised semantic segmentation of RSI. The proposed method combines RSI with DSM through two modules, namely, multipath encoder (MPE) and multitask decoder (MTD), and aligns global data distribution in the source and target domains with a UDA module. A refined post fusion (RPF) module is proposed in the inference phase to exploit the height information fully for refining the segmentation results. Specifically, MPE is designed to utilize RSI and DSM to train the segmentation network jointly, which iteratively fuses RSI and DSM features at multiple levels to enhance their feature representations. MTD is designed to produce fusion prediction maps by filtering interference information of DSM and yielding accurate segmentation masks of DSM and RSI. Experimental results show that the proposed method substantially improves the semantic segmentation performance on high-resolution RSI and outperforms state-of-the-art methods. This paper provides a methodological reference for fusing multimodal data in various RSI-based unsupervised tasks.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2023.3268362</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Coders ; Data models ; Domains ; Feature extraction ; Geology ; High resolution ; high-resolution remote sensing imagery ; Image processing ; Image resolution ; Image segmentation ; Imagery ; Methods ; Modules ; Orthophotography ; refined post fusion ; Remote sensing ; Resolution ; Semantic segmentation ; Semantics ; Task analysis ; unsupervised domain adaptation ; Unsupervised learning</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2023-01, Vol.61, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-e1291c5fedd6a4b90d96be7df430247f95067c70b8320e3f079495e165c9205f3</citedby><cites>FETCH-LOGICAL-c294t-e1291c5fedd6a4b90d96be7df430247f95067c70b8320e3f079495e165c9205f3</cites><orcidid>0000-0003-0344-1760 ; 0000-0002-1829-4006 ; 0000-0001-8922-1077 ; 0000-0003-2387-5419 ; 0000-0002-2697-3383</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10105632$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10105632$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhou, Shunping</creatorcontrib><creatorcontrib>Feng, Yuting</creatorcontrib><creatorcontrib>Li, Shengwen</creatorcontrib><creatorcontrib>Zheng, Daoyuan</creatorcontrib><creatorcontrib>Fang, Fang</creatorcontrib><creatorcontrib>Liu, Yuanyuan</creatorcontrib><creatorcontrib>Wan, Bo</creatorcontrib><title>DSM-assisted unsupervised domain adaptive network for semantic segmentation of remote sensing imagery</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>The semantic segmentation of high-resolution remote sensing imagery (RSI) is an essential task for many applications. As a promising unsupervised learning method, unsupervised domain adaptation (UDA) methods remarkably contribute to the advancement of high-resolution RSI semantic segmentation. Previous methods focus on reducing domain shift of orthophotos, suffering from some limitations because the available information in orthophotos is relatively homogeneous. This paper proposes a framework to introduce digital surface model (DSM) data for the unsupervised semantic segmentation of RSI. The proposed method combines RSI with DSM through two modules, namely, multipath encoder (MPE) and multitask decoder (MTD), and aligns global data distribution in the source and target domains with a UDA module. A refined post fusion (RPF) module is proposed in the inference phase to exploit the height information fully for refining the segmentation results. Specifically, MPE is designed to utilize RSI and DSM to train the segmentation network jointly, which iteratively fuses RSI and DSM features at multiple levels to enhance their feature representations. MTD is designed to produce fusion prediction maps by filtering interference information of DSM and yielding accurate segmentation masks of DSM and RSI. Experimental results show that the proposed method substantially improves the semantic segmentation performance on high-resolution RSI and outperforms state-of-the-art methods. This paper provides a methodological reference for fusing multimodal data in various RSI-based unsupervised tasks.</description><subject>Coders</subject><subject>Data models</subject><subject>Domains</subject><subject>Feature extraction</subject><subject>Geology</subject><subject>High resolution</subject><subject>high-resolution remote sensing imagery</subject><subject>Image processing</subject><subject>Image resolution</subject><subject>Image segmentation</subject><subject>Imagery</subject><subject>Methods</subject><subject>Modules</subject><subject>Orthophotography</subject><subject>refined post fusion</subject><subject>Remote sensing</subject><subject>Resolution</subject><subject>Semantic segmentation</subject><subject>Semantics</subject><subject>Task analysis</subject><subject>unsupervised domain adaptation</subject><subject>Unsupervised learning</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMtKAzEUQIMoWKsfILgYcD01j0lmspSqVVAEW9chnbkpqU4yJmmlf29Ku3B1H5z74CB0TfCEECzvFrOP-YRiyiaMioYJeoJGhPOmxKKqTtEIEylK2kh6ji5iXGNMKk7qEYKH-VupY7QxQVdsXNwMELY25qLzvbau0J0ekt1C4SD9-vBVGB-KCL12ybY5WfXgkk7Wu8KbIkDvE-S2i9atCtvrFYTdJToz-jvC1TGO0efT42L6XL6-z16m969lS2WVSiBUkpYb6Dqhq6XEnRRLqDtTMUyr2kiORd3WeNkwioEZXMtKciCCt5JibtgY3R72DsH_bCAmtfab4PJJRRtCapqxJlPkQLXBxxjAqCHkR8NOEaz2NtXeptrbVEebeebmMGMB4B9PMBeMsj9Si3In</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Zhou, Shunping</creator><creator>Feng, Yuting</creator><creator>Li, Shengwen</creator><creator>Zheng, Daoyuan</creator><creator>Fang, Fang</creator><creator>Liu, Yuanyuan</creator><creator>Wan, Bo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0344-1760</orcidid><orcidid>https://orcid.org/0000-0002-1829-4006</orcidid><orcidid>https://orcid.org/0000-0001-8922-1077</orcidid><orcidid>https://orcid.org/0000-0003-2387-5419</orcidid><orcidid>https://orcid.org/0000-0002-2697-3383</orcidid></search><sort><creationdate>20230101</creationdate><title>DSM-assisted unsupervised domain adaptive network for semantic segmentation of remote sensing imagery</title><author>Zhou, Shunping ; Feng, Yuting ; Li, Shengwen ; Zheng, Daoyuan ; Fang, Fang ; Liu, Yuanyuan ; Wan, Bo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-e1291c5fedd6a4b90d96be7df430247f95067c70b8320e3f079495e165c9205f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Coders</topic><topic>Data models</topic><topic>Domains</topic><topic>Feature extraction</topic><topic>Geology</topic><topic>High resolution</topic><topic>high-resolution remote sensing imagery</topic><topic>Image processing</topic><topic>Image resolution</topic><topic>Image segmentation</topic><topic>Imagery</topic><topic>Methods</topic><topic>Modules</topic><topic>Orthophotography</topic><topic>refined post fusion</topic><topic>Remote sensing</topic><topic>Resolution</topic><topic>Semantic segmentation</topic><topic>Semantics</topic><topic>Task analysis</topic><topic>unsupervised domain adaptation</topic><topic>Unsupervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Shunping</creatorcontrib><creatorcontrib>Feng, Yuting</creatorcontrib><creatorcontrib>Li, Shengwen</creatorcontrib><creatorcontrib>Zheng, Daoyuan</creatorcontrib><creatorcontrib>Fang, Fang</creatorcontrib><creatorcontrib>Liu, Yuanyuan</creatorcontrib><creatorcontrib>Wan, Bo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhou, Shunping</au><au>Feng, Yuting</au><au>Li, Shengwen</au><au>Zheng, Daoyuan</au><au>Fang, Fang</au><au>Liu, Yuanyuan</au><au>Wan, Bo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DSM-assisted unsupervised domain adaptive network for semantic segmentation of remote sensing imagery</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>61</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>The semantic segmentation of high-resolution remote sensing imagery (RSI) is an essential task for many applications. As a promising unsupervised learning method, unsupervised domain adaptation (UDA) methods remarkably contribute to the advancement of high-resolution RSI semantic segmentation. Previous methods focus on reducing domain shift of orthophotos, suffering from some limitations because the available information in orthophotos is relatively homogeneous. This paper proposes a framework to introduce digital surface model (DSM) data for the unsupervised semantic segmentation of RSI. The proposed method combines RSI with DSM through two modules, namely, multipath encoder (MPE) and multitask decoder (MTD), and aligns global data distribution in the source and target domains with a UDA module. A refined post fusion (RPF) module is proposed in the inference phase to exploit the height information fully for refining the segmentation results. Specifically, MPE is designed to utilize RSI and DSM to train the segmentation network jointly, which iteratively fuses RSI and DSM features at multiple levels to enhance their feature representations. MTD is designed to produce fusion prediction maps by filtering interference information of DSM and yielding accurate segmentation masks of DSM and RSI. Experimental results show that the proposed method substantially improves the semantic segmentation performance on high-resolution RSI and outperforms state-of-the-art methods. This paper provides a methodological reference for fusing multimodal data in various RSI-based unsupervised tasks.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2023.3268362</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0344-1760</orcidid><orcidid>https://orcid.org/0000-0002-1829-4006</orcidid><orcidid>https://orcid.org/0000-0001-8922-1077</orcidid><orcidid>https://orcid.org/0000-0003-2387-5419</orcidid><orcidid>https://orcid.org/0000-0002-2697-3383</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2023-01, Vol.61, p.1-1 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_proquest_journals_2811729208 |
source | IEEE Xplore |
subjects | Coders Data models Domains Feature extraction Geology High resolution high-resolution remote sensing imagery Image processing Image resolution Image segmentation Imagery Methods Modules Orthophotography refined post fusion Remote sensing Resolution Semantic segmentation Semantics Task analysis unsupervised domain adaptation Unsupervised learning |
title | DSM-assisted unsupervised domain adaptive network for semantic segmentation of remote sensing imagery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A33%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DSM-assisted%20unsupervised%20domain%20adaptive%20network%20for%20semantic%20segmentation%20of%20remote%20sensing%20imagery&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Zhou,%20Shunping&rft.date=2023-01-01&rft.volume=61&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2023.3268362&rft_dat=%3Cproquest_RIE%3E2811729208%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2811729208&rft_id=info:pmid/&rft_ieee_id=10105632&rfr_iscdi=true |