Robust Multi-Drone Multi-Target Tracking to Resolve Target Occlusion: A Benchmark
Multi-drone multi-target tracking aims at collabo- ratively detecting and tracking targets across multiple drones and associating the identities of objects from different drones, which can overcome the shortcomings of single-drone object tracking. To address the critical challenges of identity assoc...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on multimedia 2023, Vol.25, p.1462-1476 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1476 |
---|---|
container_issue | |
container_start_page | 1462 |
container_title | IEEE transactions on multimedia |
container_volume | 25 |
creator | Liu, Zhihao Shang, Yuanyuan Li, Timing Chen, Guanlin Wang, Yu Hu, Qinghua Zhu, Pengfei |
description | Multi-drone multi-target tracking aims at collabo- ratively detecting and tracking targets across multiple drones and associating the identities of objects from different drones, which can overcome the shortcomings of single-drone object tracking. To address the critical challenges of identity association and target occlusion in multi-drone multi-target tracking tasks, we collect an occlusion-aware multi-drone multi-target tracking dataset named MDMT. It contains 88 video sequences with 39,678 frames, including 11,454 different IDs of persons, bicycles, and cars. The MDMT dataset comprises 2,204,620 bounding boxes, of which 543,444 bounding boxes contain target occlusions. We also design a multi-device target association score (MDA) as the evaluation criteria for the ability of cross-view target association in multi-device tracking. Furthermore, we propose a Multi-matching Identity Authentication network (MIA-Net) for the multi-drone multi-target tracking task. The local-global matching algorithm in MIA-Net discovers the topological relationship of targets across drones, efficiently solves the problem of cross-drone association, and effectively complements occluded targets with the advantage of multiple drone view mapping. Extensive experiments on the MDMT dataset validate the effectiveness of our proposed MIA-Net for the task of identity association and multi-object tracking with occlusions. |
doi_str_mv | 10.1109/TMM.2023.3234822 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2811728303</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10008047</ieee_id><sourcerecordid>2811728303</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-75d7c0666c79c7ca48666f24b5022a160cb833ba8c27bba08d184578bc3a02323</originalsourceid><addsrcrecordid>eNpNkL1PwzAQxS0EEqWwMzBEYk45n5PYYSvlU2pUUYXZcly3pA1xsRMk_ntcNQPTPeneu48fIdcUJpRCflcWxQQB2YQhSwTiCRnRPKExAOenQacIcY4UzsmF91sAmqTAR-R9aaved1HRN10dPzrbmkGXym1MF5VO6V3dbqLORkvjbfNjoqG10LrpfW3b-2gaPZhWf34pt7skZ2vVeHM11DH5eH4qZ6_xfPHyNpvOY405djFPV1xDlmWa55prlYig15hUKSAqmoGuBGOVEhp5VSkQKyqSlItKMxXeRDYmt8e5e2e_e-M7ubW9a8NKiYJSjoIBCy44urSz3juzlntXhzN_JQV5ACcDOHkAJwdwIXJzjNTGmH92AAEJZ38GHmfp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2811728303</pqid></control><display><type>article</type><title>Robust Multi-Drone Multi-Target Tracking to Resolve Target Occlusion: A Benchmark</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Zhihao ; Shang, Yuanyuan ; Li, Timing ; Chen, Guanlin ; Wang, Yu ; Hu, Qinghua ; Zhu, Pengfei</creator><creatorcontrib>Liu, Zhihao ; Shang, Yuanyuan ; Li, Timing ; Chen, Guanlin ; Wang, Yu ; Hu, Qinghua ; Zhu, Pengfei</creatorcontrib><description>Multi-drone multi-target tracking aims at collabo- ratively detecting and tracking targets across multiple drones and associating the identities of objects from different drones, which can overcome the shortcomings of single-drone object tracking. To address the critical challenges of identity association and target occlusion in multi-drone multi-target tracking tasks, we collect an occlusion-aware multi-drone multi-target tracking dataset named MDMT. It contains 88 video sequences with 39,678 frames, including 11,454 different IDs of persons, bicycles, and cars. The MDMT dataset comprises 2,204,620 bounding boxes, of which 543,444 bounding boxes contain target occlusions. We also design a multi-device target association score (MDA) as the evaluation criteria for the ability of cross-view target association in multi-device tracking. Furthermore, we propose a Multi-matching Identity Authentication network (MIA-Net) for the multi-drone multi-target tracking task. The local-global matching algorithm in MIA-Net discovers the topological relationship of targets across drones, efficiently solves the problem of cross-drone association, and effectively complements occluded targets with the advantage of multiple drone view mapping. Extensive experiments on the MDMT dataset validate the effectiveness of our proposed MIA-Net for the task of identity association and multi-object tracking with occlusions.</description><identifier>ISSN: 1520-9210</identifier><identifier>EISSN: 1941-0077</identifier><identifier>DOI: 10.1109/TMM.2023.3234822</identifier><identifier>CODEN: ITMUF8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Bicycles ; Boxes ; Cameras ; Datasets ; Drone ; Drones ; identity association ; Matching ; multi-drone tracking ; multi-target tracking ; Multiple target tracking ; Object detection ; Object tracking ; Occlusion ; Target detection ; target occlusion ; Target tracking ; Task analysis ; Tracking ; Tracking devices ; Transformers</subject><ispartof>IEEE transactions on multimedia, 2023, Vol.25, p.1462-1476</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-75d7c0666c79c7ca48666f24b5022a160cb833ba8c27bba08d184578bc3a02323</citedby><cites>FETCH-LOGICAL-c292t-75d7c0666c79c7ca48666f24b5022a160cb833ba8c27bba08d184578bc3a02323</cites><orcidid>0000-0001-8960-684X ; 0000-0003-4928-895X ; 0000-0002-4788-8655 ; 0000-0001-7765-8095 ; 0000-0002-4310-9140</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10008047$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10008047$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Zhihao</creatorcontrib><creatorcontrib>Shang, Yuanyuan</creatorcontrib><creatorcontrib>Li, Timing</creatorcontrib><creatorcontrib>Chen, Guanlin</creatorcontrib><creatorcontrib>Wang, Yu</creatorcontrib><creatorcontrib>Hu, Qinghua</creatorcontrib><creatorcontrib>Zhu, Pengfei</creatorcontrib><title>Robust Multi-Drone Multi-Target Tracking to Resolve Target Occlusion: A Benchmark</title><title>IEEE transactions on multimedia</title><addtitle>TMM</addtitle><description>Multi-drone multi-target tracking aims at collabo- ratively detecting and tracking targets across multiple drones and associating the identities of objects from different drones, which can overcome the shortcomings of single-drone object tracking. To address the critical challenges of identity association and target occlusion in multi-drone multi-target tracking tasks, we collect an occlusion-aware multi-drone multi-target tracking dataset named MDMT. It contains 88 video sequences with 39,678 frames, including 11,454 different IDs of persons, bicycles, and cars. The MDMT dataset comprises 2,204,620 bounding boxes, of which 543,444 bounding boxes contain target occlusions. We also design a multi-device target association score (MDA) as the evaluation criteria for the ability of cross-view target association in multi-device tracking. Furthermore, we propose a Multi-matching Identity Authentication network (MIA-Net) for the multi-drone multi-target tracking task. The local-global matching algorithm in MIA-Net discovers the topological relationship of targets across drones, efficiently solves the problem of cross-drone association, and effectively complements occluded targets with the advantage of multiple drone view mapping. Extensive experiments on the MDMT dataset validate the effectiveness of our proposed MIA-Net for the task of identity association and multi-object tracking with occlusions.</description><subject>Algorithms</subject><subject>Bicycles</subject><subject>Boxes</subject><subject>Cameras</subject><subject>Datasets</subject><subject>Drone</subject><subject>Drones</subject><subject>identity association</subject><subject>Matching</subject><subject>multi-drone tracking</subject><subject>multi-target tracking</subject><subject>Multiple target tracking</subject><subject>Object detection</subject><subject>Object tracking</subject><subject>Occlusion</subject><subject>Target detection</subject><subject>target occlusion</subject><subject>Target tracking</subject><subject>Task analysis</subject><subject>Tracking</subject><subject>Tracking devices</subject><subject>Transformers</subject><issn>1520-9210</issn><issn>1941-0077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkL1PwzAQxS0EEqWwMzBEYk45n5PYYSvlU2pUUYXZcly3pA1xsRMk_ntcNQPTPeneu48fIdcUJpRCflcWxQQB2YQhSwTiCRnRPKExAOenQacIcY4UzsmF91sAmqTAR-R9aaved1HRN10dPzrbmkGXym1MF5VO6V3dbqLORkvjbfNjoqG10LrpfW3b-2gaPZhWf34pt7skZ2vVeHM11DH5eH4qZ6_xfPHyNpvOY405djFPV1xDlmWa55prlYig15hUKSAqmoGuBGOVEhp5VSkQKyqSlItKMxXeRDYmt8e5e2e_e-M7ubW9a8NKiYJSjoIBCy44urSz3juzlntXhzN_JQV5ACcDOHkAJwdwIXJzjNTGmH92AAEJZ38GHmfp</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Liu, Zhihao</creator><creator>Shang, Yuanyuan</creator><creator>Li, Timing</creator><creator>Chen, Guanlin</creator><creator>Wang, Yu</creator><creator>Hu, Qinghua</creator><creator>Zhu, Pengfei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8960-684X</orcidid><orcidid>https://orcid.org/0000-0003-4928-895X</orcidid><orcidid>https://orcid.org/0000-0002-4788-8655</orcidid><orcidid>https://orcid.org/0000-0001-7765-8095</orcidid><orcidid>https://orcid.org/0000-0002-4310-9140</orcidid></search><sort><creationdate>2023</creationdate><title>Robust Multi-Drone Multi-Target Tracking to Resolve Target Occlusion: A Benchmark</title><author>Liu, Zhihao ; Shang, Yuanyuan ; Li, Timing ; Chen, Guanlin ; Wang, Yu ; Hu, Qinghua ; Zhu, Pengfei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-75d7c0666c79c7ca48666f24b5022a160cb833ba8c27bba08d184578bc3a02323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Bicycles</topic><topic>Boxes</topic><topic>Cameras</topic><topic>Datasets</topic><topic>Drone</topic><topic>Drones</topic><topic>identity association</topic><topic>Matching</topic><topic>multi-drone tracking</topic><topic>multi-target tracking</topic><topic>Multiple target tracking</topic><topic>Object detection</topic><topic>Object tracking</topic><topic>Occlusion</topic><topic>Target detection</topic><topic>target occlusion</topic><topic>Target tracking</topic><topic>Task analysis</topic><topic>Tracking</topic><topic>Tracking devices</topic><topic>Transformers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Zhihao</creatorcontrib><creatorcontrib>Shang, Yuanyuan</creatorcontrib><creatorcontrib>Li, Timing</creatorcontrib><creatorcontrib>Chen, Guanlin</creatorcontrib><creatorcontrib>Wang, Yu</creatorcontrib><creatorcontrib>Hu, Qinghua</creatorcontrib><creatorcontrib>Zhu, Pengfei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on multimedia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Zhihao</au><au>Shang, Yuanyuan</au><au>Li, Timing</au><au>Chen, Guanlin</au><au>Wang, Yu</au><au>Hu, Qinghua</au><au>Zhu, Pengfei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Multi-Drone Multi-Target Tracking to Resolve Target Occlusion: A Benchmark</atitle><jtitle>IEEE transactions on multimedia</jtitle><stitle>TMM</stitle><date>2023</date><risdate>2023</risdate><volume>25</volume><spage>1462</spage><epage>1476</epage><pages>1462-1476</pages><issn>1520-9210</issn><eissn>1941-0077</eissn><coden>ITMUF8</coden><abstract>Multi-drone multi-target tracking aims at collabo- ratively detecting and tracking targets across multiple drones and associating the identities of objects from different drones, which can overcome the shortcomings of single-drone object tracking. To address the critical challenges of identity association and target occlusion in multi-drone multi-target tracking tasks, we collect an occlusion-aware multi-drone multi-target tracking dataset named MDMT. It contains 88 video sequences with 39,678 frames, including 11,454 different IDs of persons, bicycles, and cars. The MDMT dataset comprises 2,204,620 bounding boxes, of which 543,444 bounding boxes contain target occlusions. We also design a multi-device target association score (MDA) as the evaluation criteria for the ability of cross-view target association in multi-device tracking. Furthermore, we propose a Multi-matching Identity Authentication network (MIA-Net) for the multi-drone multi-target tracking task. The local-global matching algorithm in MIA-Net discovers the topological relationship of targets across drones, efficiently solves the problem of cross-drone association, and effectively complements occluded targets with the advantage of multiple drone view mapping. Extensive experiments on the MDMT dataset validate the effectiveness of our proposed MIA-Net for the task of identity association and multi-object tracking with occlusions.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TMM.2023.3234822</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-8960-684X</orcidid><orcidid>https://orcid.org/0000-0003-4928-895X</orcidid><orcidid>https://orcid.org/0000-0002-4788-8655</orcidid><orcidid>https://orcid.org/0000-0001-7765-8095</orcidid><orcidid>https://orcid.org/0000-0002-4310-9140</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1520-9210 |
ispartof | IEEE transactions on multimedia, 2023, Vol.25, p.1462-1476 |
issn | 1520-9210 1941-0077 |
language | eng |
recordid | cdi_proquest_journals_2811728303 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Bicycles Boxes Cameras Datasets Drone Drones identity association Matching multi-drone tracking multi-target tracking Multiple target tracking Object detection Object tracking Occlusion Target detection target occlusion Target tracking Task analysis Tracking Tracking devices Transformers |
title | Robust Multi-Drone Multi-Target Tracking to Resolve Target Occlusion: A Benchmark |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A02%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Multi-Drone%20Multi-Target%20Tracking%20to%20Resolve%20Target%20Occlusion:%20A%20Benchmark&rft.jtitle=IEEE%20transactions%20on%20multimedia&rft.au=Liu,%20Zhihao&rft.date=2023&rft.volume=25&rft.spage=1462&rft.epage=1476&rft.pages=1462-1476&rft.issn=1520-9210&rft.eissn=1941-0077&rft.coden=ITMUF8&rft_id=info:doi/10.1109/TMM.2023.3234822&rft_dat=%3Cproquest_RIE%3E2811728303%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2811728303&rft_id=info:pmid/&rft_ieee_id=10008047&rfr_iscdi=true |