Prediction model and demonstration of regional agricultural carbon emissions based on PCA-GS-KNN: a case study of Zhejiang province, China
The paper proposes a prediction algorithm that is composed with principal component analysis (PCA), grid search (GS) and K-nearest neighbours (KNN). Firstly, in order to solve the problem of multicollinearity in multiple regression, principal component analysis is used to select the principal compon...
Gespeichert in:
Veröffentlicht in: | Environmental Research Communications 2023-05, Vol.5 (5), p.51001 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | 51001 |
container_title | Environmental Research Communications |
container_volume | 5 |
creator | Qi, Yanwei Liu, Huailiang Zhao, Jianbo Xia, Xinghua |
description | The paper proposes a prediction algorithm that is composed with principal component analysis (PCA), grid search (GS) and K-nearest neighbours (KNN). Firstly, in order to solve the problem of multicollinearity in multiple regression, principal component analysis is used to select the principal components of the regression variables; then, the K-nearest neighbour regression prediction model is used to train the data and the grid search is used to obtain better prediction model parameters in order to solve the problem of difficult parameter selection in the traditional K-nearest neighbour regression prediction model; finally, taking Zhejiang Province, China, as an example, the optimised prediction model is used to conduct regional agricultural carbon emission. The results show that the algorithm outperforms other prediction models in terms of prediction accuracy and it can accurately predict regional agricultural carbon emissions. |
doi_str_mv | 10.1088/2515-7620/acd0f7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2811687462</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e5611bb8992e400e8933af7c17821c65</doaj_id><sourcerecordid>2811687462</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-9cb6e2767e84e3e170685037e3eec5bd033eaa0a112dd7e79f0f805a783e45273</originalsourceid><addsrcrecordid>eNp9UcFu1DAUjBBIVG3vHC0hcWrosx3HDrdqBaVqVSoBFy7Wi_2y9Wo3XuwEqb_AV-NtUOGAkA8ez8wby56qesXhLQdjzoXiqtatgHN0Hgb9rDp6op7_hV9WpzlvAEDorgHeHFU_7xL54KYQR7aLnrYMR8887eKYp4SPfBxYonVBWNR1Cm7eTnMqB4epLzrtQs5FzqzHTJ4V6m51UV9-rq9vb98xLL5MLE-zfzhkfbunTcBxzfYp_gijozO2ug8jnlQvBtxmOv29H1dfP7z_svpY33y6vFpd3NSuafRUd65vSehWk2lIEtfQGgVSF0xO9R6kJERAzoX3mnQ3wGBAoTaSGiW0PK6ullwfcWP3KewwPdiIwT4SMa0tpim4LVlSLed9b7pOUANAppMSB-24NoK7VpWs10tWecv3mfJkN3FO5aOyFYbz1uimFcUFi8ulmHOi4elWDvZQoD00ZA8N2aXAMnK2jIS4_5P5H_ubf9gpOavKAsUBuN37Qf4CIBqoyw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2811687462</pqid></control><display><type>article</type><title>Prediction model and demonstration of regional agricultural carbon emissions based on PCA-GS-KNN: a case study of Zhejiang province, China</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Qi, Yanwei ; Liu, Huailiang ; Zhao, Jianbo ; Xia, Xinghua</creator><creatorcontrib>Qi, Yanwei ; Liu, Huailiang ; Zhao, Jianbo ; Xia, Xinghua</creatorcontrib><description>The paper proposes a prediction algorithm that is composed with principal component analysis (PCA), grid search (GS) and K-nearest neighbours (KNN). Firstly, in order to solve the problem of multicollinearity in multiple regression, principal component analysis is used to select the principal components of the regression variables; then, the K-nearest neighbour regression prediction model is used to train the data and the grid search is used to obtain better prediction model parameters in order to solve the problem of difficult parameter selection in the traditional K-nearest neighbour regression prediction model; finally, taking Zhejiang Province, China, as an example, the optimised prediction model is used to conduct regional agricultural carbon emission. The results show that the algorithm outperforms other prediction models in terms of prediction accuracy and it can accurately predict regional agricultural carbon emissions.</description><identifier>ISSN: 2515-7620</identifier><identifier>EISSN: 2515-7620</identifier><identifier>DOI: 10.1088/2515-7620/acd0f7</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Algorithms ; Carbon ; Emissions ; grid search ; K-nearest neighbors regression ; model prediction ; Parameters ; Prediction models ; principal component analysis ; Principal components analysis ; regional agricultural carbon emissions ; Regression models</subject><ispartof>Environmental Research Communications, 2023-05, Vol.5 (5), p.51001</ispartof><rights>2023 The Author(s). Published by IOP Publishing Ltd</rights><rights>2023 The Author(s). Published by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-9cb6e2767e84e3e170685037e3eec5bd033eaa0a112dd7e79f0f805a783e45273</citedby><cites>FETCH-LOGICAL-c447t-9cb6e2767e84e3e170685037e3eec5bd033eaa0a112dd7e79f0f805a783e45273</cites><orcidid>0000-0003-0657-6038 ; 0000-0003-3885-061X ; 0000-0002-7053-7714</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/2515-7620/acd0f7/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,860,2096,27903,27904,38869,53845</link.rule.ids></links><search><creatorcontrib>Qi, Yanwei</creatorcontrib><creatorcontrib>Liu, Huailiang</creatorcontrib><creatorcontrib>Zhao, Jianbo</creatorcontrib><creatorcontrib>Xia, Xinghua</creatorcontrib><title>Prediction model and demonstration of regional agricultural carbon emissions based on PCA-GS-KNN: a case study of Zhejiang province, China</title><title>Environmental Research Communications</title><addtitle>ERC</addtitle><addtitle>Environ. Res. Commun</addtitle><description>The paper proposes a prediction algorithm that is composed with principal component analysis (PCA), grid search (GS) and K-nearest neighbours (KNN). Firstly, in order to solve the problem of multicollinearity in multiple regression, principal component analysis is used to select the principal components of the regression variables; then, the K-nearest neighbour regression prediction model is used to train the data and the grid search is used to obtain better prediction model parameters in order to solve the problem of difficult parameter selection in the traditional K-nearest neighbour regression prediction model; finally, taking Zhejiang Province, China, as an example, the optimised prediction model is used to conduct regional agricultural carbon emission. The results show that the algorithm outperforms other prediction models in terms of prediction accuracy and it can accurately predict regional agricultural carbon emissions.</description><subject>Algorithms</subject><subject>Carbon</subject><subject>Emissions</subject><subject>grid search</subject><subject>K-nearest neighbors regression</subject><subject>model prediction</subject><subject>Parameters</subject><subject>Prediction models</subject><subject>principal component analysis</subject><subject>Principal components analysis</subject><subject>regional agricultural carbon emissions</subject><subject>Regression models</subject><issn>2515-7620</issn><issn>2515-7620</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNp9UcFu1DAUjBBIVG3vHC0hcWrosx3HDrdqBaVqVSoBFy7Wi_2y9Wo3XuwEqb_AV-NtUOGAkA8ez8wby56qesXhLQdjzoXiqtatgHN0Hgb9rDp6op7_hV9WpzlvAEDorgHeHFU_7xL54KYQR7aLnrYMR8887eKYp4SPfBxYonVBWNR1Cm7eTnMqB4epLzrtQs5FzqzHTJ4V6m51UV9-rq9vb98xLL5MLE-zfzhkfbunTcBxzfYp_gijozO2ug8jnlQvBtxmOv29H1dfP7z_svpY33y6vFpd3NSuafRUd65vSehWk2lIEtfQGgVSF0xO9R6kJERAzoX3mnQ3wGBAoTaSGiW0PK6ullwfcWP3KewwPdiIwT4SMa0tpim4LVlSLed9b7pOUANAppMSB-24NoK7VpWs10tWecv3mfJkN3FO5aOyFYbz1uimFcUFi8ulmHOi4elWDvZQoD00ZA8N2aXAMnK2jIS4_5P5H_ubf9gpOavKAsUBuN37Qf4CIBqoyw</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Qi, Yanwei</creator><creator>Liu, Huailiang</creator><creator>Zhao, Jianbo</creator><creator>Xia, Xinghua</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0657-6038</orcidid><orcidid>https://orcid.org/0000-0003-3885-061X</orcidid><orcidid>https://orcid.org/0000-0002-7053-7714</orcidid></search><sort><creationdate>20230501</creationdate><title>Prediction model and demonstration of regional agricultural carbon emissions based on PCA-GS-KNN: a case study of Zhejiang province, China</title><author>Qi, Yanwei ; Liu, Huailiang ; Zhao, Jianbo ; Xia, Xinghua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-9cb6e2767e84e3e170685037e3eec5bd033eaa0a112dd7e79f0f805a783e45273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Carbon</topic><topic>Emissions</topic><topic>grid search</topic><topic>K-nearest neighbors regression</topic><topic>model prediction</topic><topic>Parameters</topic><topic>Prediction models</topic><topic>principal component analysis</topic><topic>Principal components analysis</topic><topic>regional agricultural carbon emissions</topic><topic>Regression models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qi, Yanwei</creatorcontrib><creatorcontrib>Liu, Huailiang</creatorcontrib><creatorcontrib>Zhao, Jianbo</creatorcontrib><creatorcontrib>Xia, Xinghua</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Environmental Research Communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qi, Yanwei</au><au>Liu, Huailiang</au><au>Zhao, Jianbo</au><au>Xia, Xinghua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction model and demonstration of regional agricultural carbon emissions based on PCA-GS-KNN: a case study of Zhejiang province, China</atitle><jtitle>Environmental Research Communications</jtitle><stitle>ERC</stitle><addtitle>Environ. Res. Commun</addtitle><date>2023-05-01</date><risdate>2023</risdate><volume>5</volume><issue>5</issue><spage>51001</spage><pages>51001-</pages><issn>2515-7620</issn><eissn>2515-7620</eissn><abstract>The paper proposes a prediction algorithm that is composed with principal component analysis (PCA), grid search (GS) and K-nearest neighbours (KNN). Firstly, in order to solve the problem of multicollinearity in multiple regression, principal component analysis is used to select the principal components of the regression variables; then, the K-nearest neighbour regression prediction model is used to train the data and the grid search is used to obtain better prediction model parameters in order to solve the problem of difficult parameter selection in the traditional K-nearest neighbour regression prediction model; finally, taking Zhejiang Province, China, as an example, the optimised prediction model is used to conduct regional agricultural carbon emission. The results show that the algorithm outperforms other prediction models in terms of prediction accuracy and it can accurately predict regional agricultural carbon emissions.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/2515-7620/acd0f7</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0657-6038</orcidid><orcidid>https://orcid.org/0000-0003-3885-061X</orcidid><orcidid>https://orcid.org/0000-0002-7053-7714</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2515-7620 |
ispartof | Environmental Research Communications, 2023-05, Vol.5 (5), p.51001 |
issn | 2515-7620 2515-7620 |
language | eng |
recordid | cdi_proquest_journals_2811687462 |
source | IOP Publishing Free Content; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Carbon Emissions grid search K-nearest neighbors regression model prediction Parameters Prediction models principal component analysis Principal components analysis regional agricultural carbon emissions Regression models |
title | Prediction model and demonstration of regional agricultural carbon emissions based on PCA-GS-KNN: a case study of Zhejiang province, China |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T14%3A37%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20model%20and%20demonstration%20of%20regional%20agricultural%20carbon%20emissions%20based%20on%20PCA-GS-KNN:%20a%20case%20study%20of%20Zhejiang%20province,%20China&rft.jtitle=Environmental%20Research%20Communications&rft.au=Qi,%20Yanwei&rft.date=2023-05-01&rft.volume=5&rft.issue=5&rft.spage=51001&rft.pages=51001-&rft.issn=2515-7620&rft.eissn=2515-7620&rft_id=info:doi/10.1088/2515-7620/acd0f7&rft_dat=%3Cproquest_iop_j%3E2811687462%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2811687462&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_e5611bb8992e400e8933af7c17821c65&rfr_iscdi=true |