Time-optimal path following for non-redundant serial manipulators using an adaptive path-discretization
The time-optimal path following (OPF) problem is to find a time evolution along a prescribed path in task space with shortest time duration. Numerical solution algorithms rely on an algorithm-specific (usually equidistant) sampling of the path parameter. This does not account for the dynamics in joi...
Gespeichert in:
Veröffentlicht in: | Robotica 2023-06, Vol.41 (6), p.1856-1871 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1871 |
---|---|
container_issue | 6 |
container_start_page | 1856 |
container_title | Robotica |
container_volume | 41 |
creator | Marauli, Tobias Gattringer, Hubert Müller, Andreas |
description | The time-optimal path following (OPF) problem is to find a time evolution along a prescribed path in task space with shortest time duration. Numerical solution algorithms rely on an algorithm-specific (usually equidistant) sampling of the path parameter. This does not account for the dynamics in joint space, that is, the actual motion of the robot, however. Moreover, a well-known problem is that large joint velocities are obtained when approaching singularities, even for slow task space motions. This can be avoided by a sampling in joint space, where the path parameter is replaced by the arc length. Such discretization in task space leads to an adaptive refinement according to the nonlinear forward kinematics and guarantees bounded joint velocities. The adaptive refinement is also beneficial for the numerical solution of the problem. It is shown that this yields trajectories with improved continuity compared to an equidistant sampling. The OPF is reformulated as a second-order cone programming and solved numerically. The approach is demonstrated for a 6-DOF industrial robot following various paths in task space. |
doi_str_mv | 10.1017/S026357472300022X |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2811473495</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S026357472300022X</cupid><sourcerecordid>2811473495</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-52ee02dd2d4b8a25f16166ba1d38c06f03ae2cfc8149832b874012d8d904fe373</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOI7-AHcF19G8mqZLGXzBgAtHcFfSJq0Z2qQmqaK_3tQZcCGu7oXznXO5B4BzjC4xwsXVEyKc5gUrCEUIEfJyABaY8RIKzsUhWMwynPVjcBLCFiFMMSsWoNuYQUM3RjPIPhtlfM1a1_fuw9gubT6zzkKv1WSVtDEL2pvEDdKacepldD5kU5hZaTOpZMp51z8xUJnQeB3Nl4zG2VNw1Mo-6LP9XILn25vN6h6uH-8eVtdr2FCOIsyJ1ogoRRSrhSR5iznmvJZYUdEg3iIqNWnaRmBWCkpqUTCEiRKqRKzVtKBLcLHLHb17m3SI1dZN3qaTFRE4vUxZmScK76jGuxC8bqvRpwL8Z4VRNfdZ_ekzeejeI4faG9Xp3-j_Xd_6B3kY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2811473495</pqid></control><display><type>article</type><title>Time-optimal path following for non-redundant serial manipulators using an adaptive path-discretization</title><source>Cambridge Journals</source><creator>Marauli, Tobias ; Gattringer, Hubert ; Müller, Andreas</creator><creatorcontrib>Marauli, Tobias ; Gattringer, Hubert ; Müller, Andreas</creatorcontrib><description>The time-optimal path following (OPF) problem is to find a time evolution along a prescribed path in task space with shortest time duration. Numerical solution algorithms rely on an algorithm-specific (usually equidistant) sampling of the path parameter. This does not account for the dynamics in joint space, that is, the actual motion of the robot, however. Moreover, a well-known problem is that large joint velocities are obtained when approaching singularities, even for slow task space motions. This can be avoided by a sampling in joint space, where the path parameter is replaced by the arc length. Such discretization in task space leads to an adaptive refinement according to the nonlinear forward kinematics and guarantees bounded joint velocities. The adaptive refinement is also beneficial for the numerical solution of the problem. It is shown that this yields trajectories with improved continuity compared to an equidistant sampling. The OPF is reformulated as a second-order cone programming and solved numerically. The approach is demonstrated for a 6-DOF industrial robot following various paths in task space.</description><identifier>ISSN: 0263-5747</identifier><identifier>EISSN: 1469-8668</identifier><identifier>DOI: 10.1017/S026357472300022X</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Algorithms ; Discretization ; Industrial robots ; Kinematics ; Modelling and Control of Innovative Robots (RAAD 2022) ; Parameters ; Robot dynamics ; Sampling ; Task space ; Trajectory planning ; Velocity</subject><ispartof>Robotica, 2023-06, Vol.41 (6), p.1856-1871</ispartof><rights>The Author(s), 2023. Published by Cambridge University Press</rights><rights>The Author(s), 2023. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited. (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-52ee02dd2d4b8a25f16166ba1d38c06f03ae2cfc8149832b874012d8d904fe373</citedby><cites>FETCH-LOGICAL-c360t-52ee02dd2d4b8a25f16166ba1d38c06f03ae2cfc8149832b874012d8d904fe373</cites><orcidid>0000-0001-5033-340X ; 0000-0003-1117-0315</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S026357472300022X/type/journal_article$$EHTML$$P50$$Gcambridge$$Hfree_for_read</linktohtml><link.rule.ids>164,314,777,781,27905,27906,55609</link.rule.ids></links><search><creatorcontrib>Marauli, Tobias</creatorcontrib><creatorcontrib>Gattringer, Hubert</creatorcontrib><creatorcontrib>Müller, Andreas</creatorcontrib><title>Time-optimal path following for non-redundant serial manipulators using an adaptive path-discretization</title><title>Robotica</title><addtitle>Robotica</addtitle><description>The time-optimal path following (OPF) problem is to find a time evolution along a prescribed path in task space with shortest time duration. Numerical solution algorithms rely on an algorithm-specific (usually equidistant) sampling of the path parameter. This does not account for the dynamics in joint space, that is, the actual motion of the robot, however. Moreover, a well-known problem is that large joint velocities are obtained when approaching singularities, even for slow task space motions. This can be avoided by a sampling in joint space, where the path parameter is replaced by the arc length. Such discretization in task space leads to an adaptive refinement according to the nonlinear forward kinematics and guarantees bounded joint velocities. The adaptive refinement is also beneficial for the numerical solution of the problem. It is shown that this yields trajectories with improved continuity compared to an equidistant sampling. The OPF is reformulated as a second-order cone programming and solved numerically. The approach is demonstrated for a 6-DOF industrial robot following various paths in task space.</description><subject>Algorithms</subject><subject>Discretization</subject><subject>Industrial robots</subject><subject>Kinematics</subject><subject>Modelling and Control of Innovative Robots (RAAD 2022)</subject><subject>Parameters</subject><subject>Robot dynamics</subject><subject>Sampling</subject><subject>Task space</subject><subject>Trajectory planning</subject><subject>Velocity</subject><issn>0263-5747</issn><issn>1469-8668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>IKXGN</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEtLxDAUhYMoOI7-AHcF19G8mqZLGXzBgAtHcFfSJq0Z2qQmqaK_3tQZcCGu7oXznXO5B4BzjC4xwsXVEyKc5gUrCEUIEfJyABaY8RIKzsUhWMwynPVjcBLCFiFMMSsWoNuYQUM3RjPIPhtlfM1a1_fuw9gubT6zzkKv1WSVtDEL2pvEDdKacepldD5kU5hZaTOpZMp51z8xUJnQeB3Nl4zG2VNw1Mo-6LP9XILn25vN6h6uH-8eVtdr2FCOIsyJ1ogoRRSrhSR5iznmvJZYUdEg3iIqNWnaRmBWCkpqUTCEiRKqRKzVtKBLcLHLHb17m3SI1dZN3qaTFRE4vUxZmScK76jGuxC8bqvRpwL8Z4VRNfdZ_ekzeejeI4faG9Xp3-j_Xd_6B3kY</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Marauli, Tobias</creator><creator>Gattringer, Hubert</creator><creator>Müller, Andreas</creator><general>Cambridge University Press</general><scope>IKXGN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-5033-340X</orcidid><orcidid>https://orcid.org/0000-0003-1117-0315</orcidid></search><sort><creationdate>20230601</creationdate><title>Time-optimal path following for non-redundant serial manipulators using an adaptive path-discretization</title><author>Marauli, Tobias ; Gattringer, Hubert ; Müller, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-52ee02dd2d4b8a25f16166ba1d38c06f03ae2cfc8149832b874012d8d904fe373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Discretization</topic><topic>Industrial robots</topic><topic>Kinematics</topic><topic>Modelling and Control of Innovative Robots (RAAD 2022)</topic><topic>Parameters</topic><topic>Robot dynamics</topic><topic>Sampling</topic><topic>Task space</topic><topic>Trajectory planning</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marauli, Tobias</creatorcontrib><creatorcontrib>Gattringer, Hubert</creatorcontrib><creatorcontrib>Müller, Andreas</creatorcontrib><collection>Cambridge Journals Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Robotica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marauli, Tobias</au><au>Gattringer, Hubert</au><au>Müller, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time-optimal path following for non-redundant serial manipulators using an adaptive path-discretization</atitle><jtitle>Robotica</jtitle><addtitle>Robotica</addtitle><date>2023-06-01</date><risdate>2023</risdate><volume>41</volume><issue>6</issue><spage>1856</spage><epage>1871</epage><pages>1856-1871</pages><issn>0263-5747</issn><eissn>1469-8668</eissn><abstract>The time-optimal path following (OPF) problem is to find a time evolution along a prescribed path in task space with shortest time duration. Numerical solution algorithms rely on an algorithm-specific (usually equidistant) sampling of the path parameter. This does not account for the dynamics in joint space, that is, the actual motion of the robot, however. Moreover, a well-known problem is that large joint velocities are obtained when approaching singularities, even for slow task space motions. This can be avoided by a sampling in joint space, where the path parameter is replaced by the arc length. Such discretization in task space leads to an adaptive refinement according to the nonlinear forward kinematics and guarantees bounded joint velocities. The adaptive refinement is also beneficial for the numerical solution of the problem. It is shown that this yields trajectories with improved continuity compared to an equidistant sampling. The OPF is reformulated as a second-order cone programming and solved numerically. The approach is demonstrated for a 6-DOF industrial robot following various paths in task space.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S026357472300022X</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-5033-340X</orcidid><orcidid>https://orcid.org/0000-0003-1117-0315</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0263-5747 |
ispartof | Robotica, 2023-06, Vol.41 (6), p.1856-1871 |
issn | 0263-5747 1469-8668 |
language | eng |
recordid | cdi_proquest_journals_2811473495 |
source | Cambridge Journals |
subjects | Algorithms Discretization Industrial robots Kinematics Modelling and Control of Innovative Robots (RAAD 2022) Parameters Robot dynamics Sampling Task space Trajectory planning Velocity |
title | Time-optimal path following for non-redundant serial manipulators using an adaptive path-discretization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T10%3A36%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time-optimal%20path%20following%20for%20non-redundant%20serial%20manipulators%20using%20an%20adaptive%20path-discretization&rft.jtitle=Robotica&rft.au=Marauli,%20Tobias&rft.date=2023-06-01&rft.volume=41&rft.issue=6&rft.spage=1856&rft.epage=1871&rft.pages=1856-1871&rft.issn=0263-5747&rft.eissn=1469-8668&rft_id=info:doi/10.1017/S026357472300022X&rft_dat=%3Cproquest_cross%3E2811473495%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2811473495&rft_id=info:pmid/&rft_cupid=10_1017_S026357472300022X&rfr_iscdi=true |