Time-optimal path following for non-redundant serial manipulators using an adaptive path-discretization
The time-optimal path following (OPF) problem is to find a time evolution along a prescribed path in task space with shortest time duration. Numerical solution algorithms rely on an algorithm-specific (usually equidistant) sampling of the path parameter. This does not account for the dynamics in joi...
Gespeichert in:
Veröffentlicht in: | Robotica 2023-06, Vol.41 (6), p.1856-1871 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The time-optimal path following (OPF) problem is to find a time evolution along a prescribed path in task space with shortest time duration. Numerical solution algorithms rely on an algorithm-specific (usually equidistant) sampling of the path parameter. This does not account for the dynamics in joint space, that is, the actual motion of the robot, however. Moreover, a well-known problem is that large joint velocities are obtained when approaching singularities, even for slow task space motions. This can be avoided by a sampling in joint space, where the path parameter is replaced by the arc length. Such discretization in task space leads to an adaptive refinement according to the nonlinear forward kinematics and guarantees bounded joint velocities. The adaptive refinement is also beneficial for the numerical solution of the problem. It is shown that this yields trajectories with improved continuity compared to an equidistant sampling. The OPF is reformulated as a second-order cone programming and solved numerically. The approach is demonstrated for a 6-DOF industrial robot following various paths in task space. |
---|---|
ISSN: | 0263-5747 1469-8668 |
DOI: | 10.1017/S026357472300022X |