PolyTO: Structural Topology Optimization using Convex Polygons

In this paper, we propose a topology optimization (TO) framework where the design is parameterized by a set of convex polygons. Extending feature mapping methods in TO, the representation allows for direct extraction of the geometry. In addition, the method allows one to impose geometric constraints...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-05
1. Verfasser: Chandrasekhar, Aaditya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Chandrasekhar, Aaditya
description In this paper, we propose a topology optimization (TO) framework where the design is parameterized by a set of convex polygons. Extending feature mapping methods in TO, the representation allows for direct extraction of the geometry. In addition, the method allows one to impose geometric constraints such as feature size control directly on the polygons that are otherwise difficult to impose in density or level set based approaches. The use of polygons provides for more more varied shapes than simpler primitives like bars, plates, or circles. The polygons are defined as the feasible set of a collection of halfspaces. Varying the halfspace's parameters allows for us to obtain diverse configurations of the polygons. Furthermore, the halfspaces are differentiably mapped onto a background mesh to allow for analysis and gradient driven optimization. The proposed framework is illustrated through numerous examples of 2D structural compliance minimization TO. Some of the key limitations and future research are also summarized.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2811365641</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2811365641</sourcerecordid><originalsourceid>FETCH-proquest_journals_28113656413</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwC8jPqQzxt1IILikqTS4pLUrMUQjJL8jPyU-vVPAvKMnMzaxKLMnMz1MoLc7MS1dwzs8rS61QAOlKz88r5mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCMLQ0NjM1MzE0Nj4lQBAPrtON8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2811365641</pqid></control><display><type>article</type><title>PolyTO: Structural Topology Optimization using Convex Polygons</title><source>Free E- Journals</source><creator>Chandrasekhar, Aaditya</creator><creatorcontrib>Chandrasekhar, Aaditya</creatorcontrib><description>In this paper, we propose a topology optimization (TO) framework where the design is parameterized by a set of convex polygons. Extending feature mapping methods in TO, the representation allows for direct extraction of the geometry. In addition, the method allows one to impose geometric constraints such as feature size control directly on the polygons that are otherwise difficult to impose in density or level set based approaches. The use of polygons provides for more more varied shapes than simpler primitives like bars, plates, or circles. The polygons are defined as the feasible set of a collection of halfspaces. Varying the halfspace's parameters allows for us to obtain diverse configurations of the polygons. Furthermore, the halfspaces are differentiably mapped onto a background mesh to allow for analysis and gradient driven optimization. The proposed framework is illustrated through numerous examples of 2D structural compliance minimization TO. Some of the key limitations and future research are also summarized.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Design optimization ; Design parameters ; Geometric constraints ; Optimization ; Polygons ; Topology optimization</subject><ispartof>arXiv.org, 2023-05</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Chandrasekhar, Aaditya</creatorcontrib><title>PolyTO: Structural Topology Optimization using Convex Polygons</title><title>arXiv.org</title><description>In this paper, we propose a topology optimization (TO) framework where the design is parameterized by a set of convex polygons. Extending feature mapping methods in TO, the representation allows for direct extraction of the geometry. In addition, the method allows one to impose geometric constraints such as feature size control directly on the polygons that are otherwise difficult to impose in density or level set based approaches. The use of polygons provides for more more varied shapes than simpler primitives like bars, plates, or circles. The polygons are defined as the feasible set of a collection of halfspaces. Varying the halfspace's parameters allows for us to obtain diverse configurations of the polygons. Furthermore, the halfspaces are differentiably mapped onto a background mesh to allow for analysis and gradient driven optimization. The proposed framework is illustrated through numerous examples of 2D structural compliance minimization TO. Some of the key limitations and future research are also summarized.</description><subject>Design optimization</subject><subject>Design parameters</subject><subject>Geometric constraints</subject><subject>Optimization</subject><subject>Polygons</subject><subject>Topology optimization</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwC8jPqQzxt1IILikqTS4pLUrMUQjJL8jPyU-vVPAvKMnMzaxKLMnMz1MoLc7MS1dwzs8rS61QAOlKz88r5mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCMLQ0NjM1MzE0Nj4lQBAPrtON8</recordid><startdate>20230508</startdate><enddate>20230508</enddate><creator>Chandrasekhar, Aaditya</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230508</creationdate><title>PolyTO: Structural Topology Optimization using Convex Polygons</title><author>Chandrasekhar, Aaditya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28113656413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Design optimization</topic><topic>Design parameters</topic><topic>Geometric constraints</topic><topic>Optimization</topic><topic>Polygons</topic><topic>Topology optimization</topic><toplevel>online_resources</toplevel><creatorcontrib>Chandrasekhar, Aaditya</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chandrasekhar, Aaditya</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>PolyTO: Structural Topology Optimization using Convex Polygons</atitle><jtitle>arXiv.org</jtitle><date>2023-05-08</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>In this paper, we propose a topology optimization (TO) framework where the design is parameterized by a set of convex polygons. Extending feature mapping methods in TO, the representation allows for direct extraction of the geometry. In addition, the method allows one to impose geometric constraints such as feature size control directly on the polygons that are otherwise difficult to impose in density or level set based approaches. The use of polygons provides for more more varied shapes than simpler primitives like bars, plates, or circles. The polygons are defined as the feasible set of a collection of halfspaces. Varying the halfspace's parameters allows for us to obtain diverse configurations of the polygons. Furthermore, the halfspaces are differentiably mapped onto a background mesh to allow for analysis and gradient driven optimization. The proposed framework is illustrated through numerous examples of 2D structural compliance minimization TO. Some of the key limitations and future research are also summarized.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2811365641
source Free E- Journals
subjects Design optimization
Design parameters
Geometric constraints
Optimization
Polygons
Topology optimization
title PolyTO: Structural Topology Optimization using Convex Polygons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A44%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=PolyTO:%20Structural%20Topology%20Optimization%20using%20Convex%20Polygons&rft.jtitle=arXiv.org&rft.au=Chandrasekhar,%20Aaditya&rft.date=2023-05-08&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2811365641%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2811365641&rft_id=info:pmid/&rfr_iscdi=true