A Reduced Basis LES turbulence model based upon Kolmogorov's equilibrium turbulence theory

In this work, we introduce an a posteriori error indicator for the reduced basis modelling of turbulent flows. It is based upon the \(k^{-5/3}\) Kolmogorov turbulence theory, thus it may be applied to any numerical discretisation of LES turbulence models. The main idea of this indicator is that if t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-05
Hauptverfasser: Alejandro Bandera Moreno, Cristina Caravaca García, Tomás Chacón Rebollo, Enrique Delgado Ávila, Macarena Gómez Mármol
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Alejandro Bandera Moreno
Cristina Caravaca García
Tomás Chacón Rebollo
Enrique Delgado Ávila
Macarena Gómez Mármol
description In this work, we introduce an a posteriori error indicator for the reduced basis modelling of turbulent flows. It is based upon the \(k^{-5/3}\) Kolmogorov turbulence theory, thus it may be applied to any numerical discretisation of LES turbulence models. The main idea of this indicator is that if the full-order solution and the Reduced Order solution are close enough, then their flow energy spectrum within the inertial range should also be close. We present some numerical tests which supports that the use of this indicator is helpful, obtaining large computational speed-ups. We use as full-order model a Finite Element discretisation of the unsteady LES Smagorinsky turbulence model.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2811359377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2811359377</sourcerecordid><originalsourceid>FETCH-proquest_journals_28113593773</originalsourceid><addsrcrecordid>eNqNiz0LwjAUAIMgWLT_IeDgVGgTa-uoUhF0UieX0o-npqR9bdIn-O_t4ODodMPdjZgjpAy8eCnEhLnWVr7vi1UkwlA67LbhZyipgJJvM6ssPyUX3pPJSUNTAK-xBM3zzA4BtdjwI-oaH2jwtbAcOlJa5UZR_Tv1T0DznrHxPdMW3C-nbL5PrruD1xrsCGyfVkimGVQq4iCQ4VpGkfyv-gD-XUK-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2811359377</pqid></control><display><type>article</type><title>A Reduced Basis LES turbulence model based upon Kolmogorov's equilibrium turbulence theory</title><source>Free E- Journals</source><creator>Alejandro Bandera Moreno ; Cristina Caravaca García ; Tomás Chacón Rebollo ; Enrique Delgado Ávila ; Macarena Gómez Mármol</creator><creatorcontrib>Alejandro Bandera Moreno ; Cristina Caravaca García ; Tomás Chacón Rebollo ; Enrique Delgado Ávila ; Macarena Gómez Mármol</creatorcontrib><description>In this work, we introduce an a posteriori error indicator for the reduced basis modelling of turbulent flows. It is based upon the \(k^{-5/3}\) Kolmogorov turbulence theory, thus it may be applied to any numerical discretisation of LES turbulence models. The main idea of this indicator is that if the full-order solution and the Reduced Order solution are close enough, then their flow energy spectrum within the inertial range should also be close. We present some numerical tests which supports that the use of this indicator is helpful, obtaining large computational speed-ups. We use as full-order model a Finite Element discretisation of the unsteady LES Smagorinsky turbulence model.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Discretization ; Energy spectra ; Finite element method ; Turbulence models</subject><ispartof>arXiv.org, 2023-05</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Alejandro Bandera Moreno</creatorcontrib><creatorcontrib>Cristina Caravaca García</creatorcontrib><creatorcontrib>Tomás Chacón Rebollo</creatorcontrib><creatorcontrib>Enrique Delgado Ávila</creatorcontrib><creatorcontrib>Macarena Gómez Mármol</creatorcontrib><title>A Reduced Basis LES turbulence model based upon Kolmogorov's equilibrium turbulence theory</title><title>arXiv.org</title><description>In this work, we introduce an a posteriori error indicator for the reduced basis modelling of turbulent flows. It is based upon the \(k^{-5/3}\) Kolmogorov turbulence theory, thus it may be applied to any numerical discretisation of LES turbulence models. The main idea of this indicator is that if the full-order solution and the Reduced Order solution are close enough, then their flow energy spectrum within the inertial range should also be close. We present some numerical tests which supports that the use of this indicator is helpful, obtaining large computational speed-ups. We use as full-order model a Finite Element discretisation of the unsteady LES Smagorinsky turbulence model.</description><subject>Discretization</subject><subject>Energy spectra</subject><subject>Finite element method</subject><subject>Turbulence models</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNiz0LwjAUAIMgWLT_IeDgVGgTa-uoUhF0UieX0o-npqR9bdIn-O_t4ODodMPdjZgjpAy8eCnEhLnWVr7vi1UkwlA67LbhZyipgJJvM6ssPyUX3pPJSUNTAK-xBM3zzA4BtdjwI-oaH2jwtbAcOlJa5UZR_Tv1T0DznrHxPdMW3C-nbL5PrruD1xrsCGyfVkimGVQq4iCQ4VpGkfyv-gD-XUK-</recordid><startdate>20230508</startdate><enddate>20230508</enddate><creator>Alejandro Bandera Moreno</creator><creator>Cristina Caravaca García</creator><creator>Tomás Chacón Rebollo</creator><creator>Enrique Delgado Ávila</creator><creator>Macarena Gómez Mármol</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230508</creationdate><title>A Reduced Basis LES turbulence model based upon Kolmogorov's equilibrium turbulence theory</title><author>Alejandro Bandera Moreno ; Cristina Caravaca García ; Tomás Chacón Rebollo ; Enrique Delgado Ávila ; Macarena Gómez Mármol</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28113593773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Discretization</topic><topic>Energy spectra</topic><topic>Finite element method</topic><topic>Turbulence models</topic><toplevel>online_resources</toplevel><creatorcontrib>Alejandro Bandera Moreno</creatorcontrib><creatorcontrib>Cristina Caravaca García</creatorcontrib><creatorcontrib>Tomás Chacón Rebollo</creatorcontrib><creatorcontrib>Enrique Delgado Ávila</creatorcontrib><creatorcontrib>Macarena Gómez Mármol</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alejandro Bandera Moreno</au><au>Cristina Caravaca García</au><au>Tomás Chacón Rebollo</au><au>Enrique Delgado Ávila</au><au>Macarena Gómez Mármol</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A Reduced Basis LES turbulence model based upon Kolmogorov's equilibrium turbulence theory</atitle><jtitle>arXiv.org</jtitle><date>2023-05-08</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>In this work, we introduce an a posteriori error indicator for the reduced basis modelling of turbulent flows. It is based upon the \(k^{-5/3}\) Kolmogorov turbulence theory, thus it may be applied to any numerical discretisation of LES turbulence models. The main idea of this indicator is that if the full-order solution and the Reduced Order solution are close enough, then their flow energy spectrum within the inertial range should also be close. We present some numerical tests which supports that the use of this indicator is helpful, obtaining large computational speed-ups. We use as full-order model a Finite Element discretisation of the unsteady LES Smagorinsky turbulence model.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2811359377
source Free E- Journals
subjects Discretization
Energy spectra
Finite element method
Turbulence models
title A Reduced Basis LES turbulence model based upon Kolmogorov's equilibrium turbulence theory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T00%3A04%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20Reduced%20Basis%20LES%20turbulence%20model%20based%20upon%20Kolmogorov's%20equilibrium%20turbulence%20theory&rft.jtitle=arXiv.org&rft.au=Alejandro%20Bandera%20Moreno&rft.date=2023-05-08&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2811359377%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2811359377&rft_id=info:pmid/&rfr_iscdi=true