A Reduced Basis LES turbulence model based upon Kolmogorov's equilibrium turbulence theory
In this work, we introduce an a posteriori error indicator for the reduced basis modelling of turbulent flows. It is based upon the \(k^{-5/3}\) Kolmogorov turbulence theory, thus it may be applied to any numerical discretisation of LES turbulence models. The main idea of this indicator is that if t...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-05 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Alejandro Bandera Moreno Cristina Caravaca García Tomás Chacón Rebollo Enrique Delgado Ávila Macarena Gómez Mármol |
description | In this work, we introduce an a posteriori error indicator for the reduced basis modelling of turbulent flows. It is based upon the \(k^{-5/3}\) Kolmogorov turbulence theory, thus it may be applied to any numerical discretisation of LES turbulence models. The main idea of this indicator is that if the full-order solution and the Reduced Order solution are close enough, then their flow energy spectrum within the inertial range should also be close. We present some numerical tests which supports that the use of this indicator is helpful, obtaining large computational speed-ups. We use as full-order model a Finite Element discretisation of the unsteady LES Smagorinsky turbulence model. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2811359377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2811359377</sourcerecordid><originalsourceid>FETCH-proquest_journals_28113593773</originalsourceid><addsrcrecordid>eNqNiz0LwjAUAIMgWLT_IeDgVGgTa-uoUhF0UieX0o-npqR9bdIn-O_t4ODodMPdjZgjpAy8eCnEhLnWVr7vi1UkwlA67LbhZyipgJJvM6ssPyUX3pPJSUNTAK-xBM3zzA4BtdjwI-oaH2jwtbAcOlJa5UZR_Tv1T0DznrHxPdMW3C-nbL5PrruD1xrsCGyfVkimGVQq4iCQ4VpGkfyv-gD-XUK-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2811359377</pqid></control><display><type>article</type><title>A Reduced Basis LES turbulence model based upon Kolmogorov's equilibrium turbulence theory</title><source>Free E- Journals</source><creator>Alejandro Bandera Moreno ; Cristina Caravaca García ; Tomás Chacón Rebollo ; Enrique Delgado Ávila ; Macarena Gómez Mármol</creator><creatorcontrib>Alejandro Bandera Moreno ; Cristina Caravaca García ; Tomás Chacón Rebollo ; Enrique Delgado Ávila ; Macarena Gómez Mármol</creatorcontrib><description>In this work, we introduce an a posteriori error indicator for the reduced basis modelling of turbulent flows. It is based upon the \(k^{-5/3}\) Kolmogorov turbulence theory, thus it may be applied to any numerical discretisation of LES turbulence models. The main idea of this indicator is that if the full-order solution and the Reduced Order solution are close enough, then their flow energy spectrum within the inertial range should also be close. We present some numerical tests which supports that the use of this indicator is helpful, obtaining large computational speed-ups. We use as full-order model a Finite Element discretisation of the unsteady LES Smagorinsky turbulence model.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Discretization ; Energy spectra ; Finite element method ; Turbulence models</subject><ispartof>arXiv.org, 2023-05</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Alejandro Bandera Moreno</creatorcontrib><creatorcontrib>Cristina Caravaca García</creatorcontrib><creatorcontrib>Tomás Chacón Rebollo</creatorcontrib><creatorcontrib>Enrique Delgado Ávila</creatorcontrib><creatorcontrib>Macarena Gómez Mármol</creatorcontrib><title>A Reduced Basis LES turbulence model based upon Kolmogorov's equilibrium turbulence theory</title><title>arXiv.org</title><description>In this work, we introduce an a posteriori error indicator for the reduced basis modelling of turbulent flows. It is based upon the \(k^{-5/3}\) Kolmogorov turbulence theory, thus it may be applied to any numerical discretisation of LES turbulence models. The main idea of this indicator is that if the full-order solution and the Reduced Order solution are close enough, then their flow energy spectrum within the inertial range should also be close. We present some numerical tests which supports that the use of this indicator is helpful, obtaining large computational speed-ups. We use as full-order model a Finite Element discretisation of the unsteady LES Smagorinsky turbulence model.</description><subject>Discretization</subject><subject>Energy spectra</subject><subject>Finite element method</subject><subject>Turbulence models</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNiz0LwjAUAIMgWLT_IeDgVGgTa-uoUhF0UieX0o-npqR9bdIn-O_t4ODodMPdjZgjpAy8eCnEhLnWVr7vi1UkwlA67LbhZyipgJJvM6ssPyUX3pPJSUNTAK-xBM3zzA4BtdjwI-oaH2jwtbAcOlJa5UZR_Tv1T0DznrHxPdMW3C-nbL5PrruD1xrsCGyfVkimGVQq4iCQ4VpGkfyv-gD-XUK-</recordid><startdate>20230508</startdate><enddate>20230508</enddate><creator>Alejandro Bandera Moreno</creator><creator>Cristina Caravaca García</creator><creator>Tomás Chacón Rebollo</creator><creator>Enrique Delgado Ávila</creator><creator>Macarena Gómez Mármol</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230508</creationdate><title>A Reduced Basis LES turbulence model based upon Kolmogorov's equilibrium turbulence theory</title><author>Alejandro Bandera Moreno ; Cristina Caravaca García ; Tomás Chacón Rebollo ; Enrique Delgado Ávila ; Macarena Gómez Mármol</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28113593773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Discretization</topic><topic>Energy spectra</topic><topic>Finite element method</topic><topic>Turbulence models</topic><toplevel>online_resources</toplevel><creatorcontrib>Alejandro Bandera Moreno</creatorcontrib><creatorcontrib>Cristina Caravaca García</creatorcontrib><creatorcontrib>Tomás Chacón Rebollo</creatorcontrib><creatorcontrib>Enrique Delgado Ávila</creatorcontrib><creatorcontrib>Macarena Gómez Mármol</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alejandro Bandera Moreno</au><au>Cristina Caravaca García</au><au>Tomás Chacón Rebollo</au><au>Enrique Delgado Ávila</au><au>Macarena Gómez Mármol</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A Reduced Basis LES turbulence model based upon Kolmogorov's equilibrium turbulence theory</atitle><jtitle>arXiv.org</jtitle><date>2023-05-08</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>In this work, we introduce an a posteriori error indicator for the reduced basis modelling of turbulent flows. It is based upon the \(k^{-5/3}\) Kolmogorov turbulence theory, thus it may be applied to any numerical discretisation of LES turbulence models. The main idea of this indicator is that if the full-order solution and the Reduced Order solution are close enough, then their flow energy spectrum within the inertial range should also be close. We present some numerical tests which supports that the use of this indicator is helpful, obtaining large computational speed-ups. We use as full-order model a Finite Element discretisation of the unsteady LES Smagorinsky turbulence model.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2811359377 |
source | Free E- Journals |
subjects | Discretization Energy spectra Finite element method Turbulence models |
title | A Reduced Basis LES turbulence model based upon Kolmogorov's equilibrium turbulence theory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T00%3A04%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20Reduced%20Basis%20LES%20turbulence%20model%20based%20upon%20Kolmogorov's%20equilibrium%20turbulence%20theory&rft.jtitle=arXiv.org&rft.au=Alejandro%20Bandera%20Moreno&rft.date=2023-05-08&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2811359377%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2811359377&rft_id=info:pmid/&rfr_iscdi=true |