FINITE GROUPS WITH LARGE CHERMAK–DELGADO LATTICES

Given a finite group G, we denote by $L(G)$ the subgroup lattice of G and by ${\cal CD}(G)$ the Chermak–Delgado lattice of G. In this note, we determine the finite groups G such that $|{\cal CD}(G)|=|L(G)|-k$ , for $k=1,2$ .

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Australian Mathematical Society 2023-06, Vol.107 (3), p.451-455
Hauptverfasser: FASOLĂ, GEORGIANA, TǍRNǍUCEANU, MARIUS
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 455
container_issue 3
container_start_page 451
container_title Bulletin of the Australian Mathematical Society
container_volume 107
creator FASOLĂ, GEORGIANA
TǍRNǍUCEANU, MARIUS
description Given a finite group G, we denote by $L(G)$ the subgroup lattice of G and by ${\cal CD}(G)$ the Chermak–Delgado lattice of G. In this note, we determine the finite groups G such that $|{\cal CD}(G)|=|L(G)|-k$ , for $k=1,2$ .
doi_str_mv 10.1017/S0004972722000806
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2811344137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0004972722000806</cupid><sourcerecordid>2811344137</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-85bb8a74018e74f57e01d8c0c6b933fb9f72ce86dd6e687eaafc75ad733c7b153</originalsourceid><addsrcrecordid>eNp1UMtOg0AUnRhNrNUPcEfiGp3LMNxhSSgFIooBGpdkGAbTxto6tAt3_oN_6JcIaRMXxtV9nFdyCLkGegsU8K6klLo-Oug4wyaod0ImgJzb4DF2SiYjbI_4Obno-9Vwce6ICWHz9DGtIisu8sVTaT2nVWJlQRFHVphExUNw__35NYuyOJjlw7-q0jAqL8lZJ197fXWcU7KYR1WY2Fkep2GQ2YoB7mzBm0ZIdCkIjW7HUVNohaLKa3zGusbv0FFaeG3raU-glrJTyGWLjClsgLMpuTn4bs3mfa_7Xb3a7M3bEFk7AoC5LjAcWHBgKbPpe6O7emuWa2k-aqD12E39p5tBw44auW7Msn3Rv9b_q34AS9tgyw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2811344137</pqid></control><display><type>article</type><title>FINITE GROUPS WITH LARGE CHERMAK–DELGADO LATTICES</title><source>Cambridge University Press Journals Complete</source><creator>FASOLĂ, GEORGIANA ; TǍRNǍUCEANU, MARIUS</creator><creatorcontrib>FASOLĂ, GEORGIANA ; TǍRNǍUCEANU, MARIUS</creatorcontrib><description>Given a finite group G, we denote by $L(G)$ the subgroup lattice of G and by ${\cal CD}(G)$ the Chermak–Delgado lattice of G. In this note, we determine the finite groups G such that $|{\cal CD}(G)|=|L(G)|-k$ , for $k=1,2$ .</description><identifier>ISSN: 0004-9727</identifier><identifier>EISSN: 1755-1633</identifier><identifier>DOI: 10.1017/S0004972722000806</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Group theory ; Hypotheses ; Lattices (mathematics) ; Subgroups</subject><ispartof>Bulletin of the Australian Mathematical Society, 2023-06, Vol.107 (3), p.451-455</ispartof><rights>The Author(s), 2022. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-85bb8a74018e74f57e01d8c0c6b933fb9f72ce86dd6e687eaafc75ad733c7b153</citedby><cites>FETCH-LOGICAL-c317t-85bb8a74018e74f57e01d8c0c6b933fb9f72ce86dd6e687eaafc75ad733c7b153</cites><orcidid>0000-0003-0368-6821 ; 0000-0003-3371-1899</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0004972722000806/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27903,27904,55606</link.rule.ids></links><search><creatorcontrib>FASOLĂ, GEORGIANA</creatorcontrib><creatorcontrib>TǍRNǍUCEANU, MARIUS</creatorcontrib><title>FINITE GROUPS WITH LARGE CHERMAK–DELGADO LATTICES</title><title>Bulletin of the Australian Mathematical Society</title><addtitle>Bull. Aust. Math. Soc</addtitle><description>Given a finite group G, we denote by $L(G)$ the subgroup lattice of G and by ${\cal CD}(G)$ the Chermak–Delgado lattice of G. In this note, we determine the finite groups G such that $|{\cal CD}(G)|=|L(G)|-k$ , for $k=1,2$ .</description><subject>Group theory</subject><subject>Hypotheses</subject><subject>Lattices (mathematics)</subject><subject>Subgroups</subject><issn>0004-9727</issn><issn>1755-1633</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1UMtOg0AUnRhNrNUPcEfiGp3LMNxhSSgFIooBGpdkGAbTxto6tAt3_oN_6JcIaRMXxtV9nFdyCLkGegsU8K6klLo-Oug4wyaod0ImgJzb4DF2SiYjbI_4Obno-9Vwce6ICWHz9DGtIisu8sVTaT2nVWJlQRFHVphExUNw__35NYuyOJjlw7-q0jAqL8lZJ197fXWcU7KYR1WY2Fkep2GQ2YoB7mzBm0ZIdCkIjW7HUVNohaLKa3zGusbv0FFaeG3raU-glrJTyGWLjClsgLMpuTn4bs3mfa_7Xb3a7M3bEFk7AoC5LjAcWHBgKbPpe6O7emuWa2k-aqD12E39p5tBw44auW7Msn3Rv9b_q34AS9tgyw</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>FASOLĂ, GEORGIANA</creator><creator>TǍRNǍUCEANU, MARIUS</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-0368-6821</orcidid><orcidid>https://orcid.org/0000-0003-3371-1899</orcidid></search><sort><creationdate>20230601</creationdate><title>FINITE GROUPS WITH LARGE CHERMAK–DELGADO LATTICES</title><author>FASOLĂ, GEORGIANA ; TǍRNǍUCEANU, MARIUS</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-85bb8a74018e74f57e01d8c0c6b933fb9f72ce86dd6e687eaafc75ad733c7b153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Group theory</topic><topic>Hypotheses</topic><topic>Lattices (mathematics)</topic><topic>Subgroups</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>FASOLĂ, GEORGIANA</creatorcontrib><creatorcontrib>TǍRNǍUCEANU, MARIUS</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Bulletin of the Australian Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>FASOLĂ, GEORGIANA</au><au>TǍRNǍUCEANU, MARIUS</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FINITE GROUPS WITH LARGE CHERMAK–DELGADO LATTICES</atitle><jtitle>Bulletin of the Australian Mathematical Society</jtitle><addtitle>Bull. Aust. Math. Soc</addtitle><date>2023-06-01</date><risdate>2023</risdate><volume>107</volume><issue>3</issue><spage>451</spage><epage>455</epage><pages>451-455</pages><issn>0004-9727</issn><eissn>1755-1633</eissn><abstract>Given a finite group G, we denote by $L(G)$ the subgroup lattice of G and by ${\cal CD}(G)$ the Chermak–Delgado lattice of G. In this note, we determine the finite groups G such that $|{\cal CD}(G)|=|L(G)|-k$ , for $k=1,2$ .</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0004972722000806</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-0368-6821</orcidid><orcidid>https://orcid.org/0000-0003-3371-1899</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0004-9727
ispartof Bulletin of the Australian Mathematical Society, 2023-06, Vol.107 (3), p.451-455
issn 0004-9727
1755-1633
language eng
recordid cdi_proquest_journals_2811344137
source Cambridge University Press Journals Complete
subjects Group theory
Hypotheses
Lattices (mathematics)
Subgroups
title FINITE GROUPS WITH LARGE CHERMAK–DELGADO LATTICES
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A48%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FINITE%20GROUPS%20WITH%20LARGE%20CHERMAK%E2%80%93DELGADO%20LATTICES&rft.jtitle=Bulletin%20of%20the%20Australian%20Mathematical%20Society&rft.au=FASOL%C4%82,%20GEORGIANA&rft.date=2023-06-01&rft.volume=107&rft.issue=3&rft.spage=451&rft.epage=455&rft.pages=451-455&rft.issn=0004-9727&rft.eissn=1755-1633&rft_id=info:doi/10.1017/S0004972722000806&rft_dat=%3Cproquest_cross%3E2811344137%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2811344137&rft_id=info:pmid/&rft_cupid=10_1017_S0004972722000806&rfr_iscdi=true