A framework of nonparametric regression to predict natural gas demand
This paper investigates the use of nonparametric regression to forecast natural gas demand. The demand for natural gas is constantly rising to meet people’s daily needs. This causes natural gas capacity to dwindle day by day. The fluctuating increase in natural gas prices is one of the consequences...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2714 |
creator | Sinaga, Rani F. Sutarman Tulus Darnius, Open Mawengkang, Herman |
description | This paper investigates the use of nonparametric regression to forecast natural gas demand. The demand for natural gas is constantly rising to meet people’s daily needs. This causes natural gas capacity to dwindle day by day. The fluctuating increase in natural gas prices is one of the consequences of the current imbalance between natural gas production and consumption. This time, nonparametric regression was used to analyze the data. In this case, the nonparametric regression approach technique can be used as an alternative because its use is not tied to global assumptions. Although it does not respond quickly enough to natural gas demand, it can predict natural gas prices well by taking into account various existing factors. As a result, we require a nonparametric regression model that accurately predicts natural gas demand. |
doi_str_mv | 10.1063/5.0128460 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2811320722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2811320722</sourcerecordid><originalsourceid>FETCH-LOGICAL-p168t-b6f5b21bb5415d5d3aaeff1078e29933efb74c773d78840edce4d2ebe83e7a103</originalsourceid><addsrcrecordid>eNp9kEFLAzEUhIMoWKsH_0HAm7A1L9lsssdSahUKXhS8hezmpWxtN2uSKv57W1rw5mlg-JgZhpBbYBNglXiQEwZclxU7IyOQEgpVQXVORozVZcFL8X5JrlJaM8ZrpfSIzKfUR7vF7xA_aPC0D_1gD0aOXUsjriKm1IWe5kCHiK5rM-1t3kW7oSubqMOt7d01ufB2k_DmpGPy9jh_nT0Vy5fF82y6LAaodC6aysuGQ9PIEqSTTliL3gNTGnldC4G-UWWrlHBK65Kha7F0HBvUApUFJsbk7pg7xPC5w5TNOuxiv680XAMIzhTne-r-SKW2yzbv15shdlsbfwwwc7jJSHO66T_4K8Q_0AzOi19omGji</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2811320722</pqid></control><display><type>conference_proceeding</type><title>A framework of nonparametric regression to predict natural gas demand</title><source>AIP Journals Complete</source><creator>Sinaga, Rani F. ; Sutarman ; Tulus ; Darnius, Open ; Mawengkang, Herman</creator><contributor>Junaidi, Agus ; Agustiani, Sarifah ; Arifin, Yoseph Tajul ; Baidawi, Taufik ; Dalis, Sopiyan ; Haryani ; Hastuti, Dwi Puji</contributor><creatorcontrib>Sinaga, Rani F. ; Sutarman ; Tulus ; Darnius, Open ; Mawengkang, Herman ; Junaidi, Agus ; Agustiani, Sarifah ; Arifin, Yoseph Tajul ; Baidawi, Taufik ; Dalis, Sopiyan ; Haryani ; Hastuti, Dwi Puji</creatorcontrib><description>This paper investigates the use of nonparametric regression to forecast natural gas demand. The demand for natural gas is constantly rising to meet people’s daily needs. This causes natural gas capacity to dwindle day by day. The fluctuating increase in natural gas prices is one of the consequences of the current imbalance between natural gas production and consumption. This time, nonparametric regression was used to analyze the data. In this case, the nonparametric regression approach technique can be used as an alternative because its use is not tied to global assumptions. Although it does not respond quickly enough to natural gas demand, it can predict natural gas prices well by taking into account various existing factors. As a result, we require a nonparametric regression model that accurately predicts natural gas demand.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0128460</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Demand ; Natural gas industry ; Regression models</subject><ispartof>AIP Conference Proceedings, 2023, Vol.2714 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0128460$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Junaidi, Agus</contributor><contributor>Agustiani, Sarifah</contributor><contributor>Arifin, Yoseph Tajul</contributor><contributor>Baidawi, Taufik</contributor><contributor>Dalis, Sopiyan</contributor><contributor>Haryani</contributor><contributor>Hastuti, Dwi Puji</contributor><creatorcontrib>Sinaga, Rani F.</creatorcontrib><creatorcontrib>Sutarman</creatorcontrib><creatorcontrib>Tulus</creatorcontrib><creatorcontrib>Darnius, Open</creatorcontrib><creatorcontrib>Mawengkang, Herman</creatorcontrib><title>A framework of nonparametric regression to predict natural gas demand</title><title>AIP Conference Proceedings</title><description>This paper investigates the use of nonparametric regression to forecast natural gas demand. The demand for natural gas is constantly rising to meet people’s daily needs. This causes natural gas capacity to dwindle day by day. The fluctuating increase in natural gas prices is one of the consequences of the current imbalance between natural gas production and consumption. This time, nonparametric regression was used to analyze the data. In this case, the nonparametric regression approach technique can be used as an alternative because its use is not tied to global assumptions. Although it does not respond quickly enough to natural gas demand, it can predict natural gas prices well by taking into account various existing factors. As a result, we require a nonparametric regression model that accurately predicts natural gas demand.</description><subject>Demand</subject><subject>Natural gas industry</subject><subject>Regression models</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kEFLAzEUhIMoWKsH_0HAm7A1L9lsssdSahUKXhS8hezmpWxtN2uSKv57W1rw5mlg-JgZhpBbYBNglXiQEwZclxU7IyOQEgpVQXVORozVZcFL8X5JrlJaM8ZrpfSIzKfUR7vF7xA_aPC0D_1gD0aOXUsjriKm1IWe5kCHiK5rM-1t3kW7oSubqMOt7d01ufB2k_DmpGPy9jh_nT0Vy5fF82y6LAaodC6aysuGQ9PIEqSTTliL3gNTGnldC4G-UWWrlHBK65Kha7F0HBvUApUFJsbk7pg7xPC5w5TNOuxiv680XAMIzhTne-r-SKW2yzbv15shdlsbfwwwc7jJSHO66T_4K8Q_0AzOi19omGji</recordid><startdate>20230509</startdate><enddate>20230509</enddate><creator>Sinaga, Rani F.</creator><creator>Sutarman</creator><creator>Tulus</creator><creator>Darnius, Open</creator><creator>Mawengkang, Herman</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20230509</creationdate><title>A framework of nonparametric regression to predict natural gas demand</title><author>Sinaga, Rani F. ; Sutarman ; Tulus ; Darnius, Open ; Mawengkang, Herman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p168t-b6f5b21bb5415d5d3aaeff1078e29933efb74c773d78840edce4d2ebe83e7a103</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Demand</topic><topic>Natural gas industry</topic><topic>Regression models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sinaga, Rani F.</creatorcontrib><creatorcontrib>Sutarman</creatorcontrib><creatorcontrib>Tulus</creatorcontrib><creatorcontrib>Darnius, Open</creatorcontrib><creatorcontrib>Mawengkang, Herman</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sinaga, Rani F.</au><au>Sutarman</au><au>Tulus</au><au>Darnius, Open</au><au>Mawengkang, Herman</au><au>Junaidi, Agus</au><au>Agustiani, Sarifah</au><au>Arifin, Yoseph Tajul</au><au>Baidawi, Taufik</au><au>Dalis, Sopiyan</au><au>Haryani</au><au>Hastuti, Dwi Puji</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A framework of nonparametric regression to predict natural gas demand</atitle><btitle>AIP Conference Proceedings</btitle><date>2023-05-09</date><risdate>2023</risdate><volume>2714</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>This paper investigates the use of nonparametric regression to forecast natural gas demand. The demand for natural gas is constantly rising to meet people’s daily needs. This causes natural gas capacity to dwindle day by day. The fluctuating increase in natural gas prices is one of the consequences of the current imbalance between natural gas production and consumption. This time, nonparametric regression was used to analyze the data. In this case, the nonparametric regression approach technique can be used as an alternative because its use is not tied to global assumptions. Although it does not respond quickly enough to natural gas demand, it can predict natural gas prices well by taking into account various existing factors. As a result, we require a nonparametric regression model that accurately predicts natural gas demand.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0128460</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP Conference Proceedings, 2023, Vol.2714 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_2811320722 |
source | AIP Journals Complete |
subjects | Demand Natural gas industry Regression models |
title | A framework of nonparametric regression to predict natural gas demand |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T19%3A09%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20framework%20of%20nonparametric%20regression%20to%20predict%20natural%20gas%20demand&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Sinaga,%20Rani%20F.&rft.date=2023-05-09&rft.volume=2714&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0128460&rft_dat=%3Cproquest_scita%3E2811320722%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2811320722&rft_id=info:pmid/&rfr_iscdi=true |