A framework of nonparametric regression to predict natural gas demand

This paper investigates the use of nonparametric regression to forecast natural gas demand. The demand for natural gas is constantly rising to meet people’s daily needs. This causes natural gas capacity to dwindle day by day. The fluctuating increase in natural gas prices is one of the consequences...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sinaga, Rani F., Sutarman, Tulus, Darnius, Open, Mawengkang, Herman
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2714
creator Sinaga, Rani F.
Sutarman
Tulus
Darnius, Open
Mawengkang, Herman
description This paper investigates the use of nonparametric regression to forecast natural gas demand. The demand for natural gas is constantly rising to meet people’s daily needs. This causes natural gas capacity to dwindle day by day. The fluctuating increase in natural gas prices is one of the consequences of the current imbalance between natural gas production and consumption. This time, nonparametric regression was used to analyze the data. In this case, the nonparametric regression approach technique can be used as an alternative because its use is not tied to global assumptions. Although it does not respond quickly enough to natural gas demand, it can predict natural gas prices well by taking into account various existing factors. As a result, we require a nonparametric regression model that accurately predicts natural gas demand.
doi_str_mv 10.1063/5.0128460
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2811320722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2811320722</sourcerecordid><originalsourceid>FETCH-LOGICAL-p168t-b6f5b21bb5415d5d3aaeff1078e29933efb74c773d78840edce4d2ebe83e7a103</originalsourceid><addsrcrecordid>eNp9kEFLAzEUhIMoWKsH_0HAm7A1L9lsssdSahUKXhS8hezmpWxtN2uSKv57W1rw5mlg-JgZhpBbYBNglXiQEwZclxU7IyOQEgpVQXVORozVZcFL8X5JrlJaM8ZrpfSIzKfUR7vF7xA_aPC0D_1gD0aOXUsjriKm1IWe5kCHiK5rM-1t3kW7oSubqMOt7d01ufB2k_DmpGPy9jh_nT0Vy5fF82y6LAaodC6aysuGQ9PIEqSTTliL3gNTGnldC4G-UWWrlHBK65Kha7F0HBvUApUFJsbk7pg7xPC5w5TNOuxiv680XAMIzhTne-r-SKW2yzbv15shdlsbfwwwc7jJSHO66T_4K8Q_0AzOi19omGji</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2811320722</pqid></control><display><type>conference_proceeding</type><title>A framework of nonparametric regression to predict natural gas demand</title><source>AIP Journals Complete</source><creator>Sinaga, Rani F. ; Sutarman ; Tulus ; Darnius, Open ; Mawengkang, Herman</creator><contributor>Junaidi, Agus ; Agustiani, Sarifah ; Arifin, Yoseph Tajul ; Baidawi, Taufik ; Dalis, Sopiyan ; Haryani ; Hastuti, Dwi Puji</contributor><creatorcontrib>Sinaga, Rani F. ; Sutarman ; Tulus ; Darnius, Open ; Mawengkang, Herman ; Junaidi, Agus ; Agustiani, Sarifah ; Arifin, Yoseph Tajul ; Baidawi, Taufik ; Dalis, Sopiyan ; Haryani ; Hastuti, Dwi Puji</creatorcontrib><description>This paper investigates the use of nonparametric regression to forecast natural gas demand. The demand for natural gas is constantly rising to meet people’s daily needs. This causes natural gas capacity to dwindle day by day. The fluctuating increase in natural gas prices is one of the consequences of the current imbalance between natural gas production and consumption. This time, nonparametric regression was used to analyze the data. In this case, the nonparametric regression approach technique can be used as an alternative because its use is not tied to global assumptions. Although it does not respond quickly enough to natural gas demand, it can predict natural gas prices well by taking into account various existing factors. As a result, we require a nonparametric regression model that accurately predicts natural gas demand.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0128460</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Demand ; Natural gas industry ; Regression models</subject><ispartof>AIP Conference Proceedings, 2023, Vol.2714 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0128460$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Junaidi, Agus</contributor><contributor>Agustiani, Sarifah</contributor><contributor>Arifin, Yoseph Tajul</contributor><contributor>Baidawi, Taufik</contributor><contributor>Dalis, Sopiyan</contributor><contributor>Haryani</contributor><contributor>Hastuti, Dwi Puji</contributor><creatorcontrib>Sinaga, Rani F.</creatorcontrib><creatorcontrib>Sutarman</creatorcontrib><creatorcontrib>Tulus</creatorcontrib><creatorcontrib>Darnius, Open</creatorcontrib><creatorcontrib>Mawengkang, Herman</creatorcontrib><title>A framework of nonparametric regression to predict natural gas demand</title><title>AIP Conference Proceedings</title><description>This paper investigates the use of nonparametric regression to forecast natural gas demand. The demand for natural gas is constantly rising to meet people’s daily needs. This causes natural gas capacity to dwindle day by day. The fluctuating increase in natural gas prices is one of the consequences of the current imbalance between natural gas production and consumption. This time, nonparametric regression was used to analyze the data. In this case, the nonparametric regression approach technique can be used as an alternative because its use is not tied to global assumptions. Although it does not respond quickly enough to natural gas demand, it can predict natural gas prices well by taking into account various existing factors. As a result, we require a nonparametric regression model that accurately predicts natural gas demand.</description><subject>Demand</subject><subject>Natural gas industry</subject><subject>Regression models</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kEFLAzEUhIMoWKsH_0HAm7A1L9lsssdSahUKXhS8hezmpWxtN2uSKv57W1rw5mlg-JgZhpBbYBNglXiQEwZclxU7IyOQEgpVQXVORozVZcFL8X5JrlJaM8ZrpfSIzKfUR7vF7xA_aPC0D_1gD0aOXUsjriKm1IWe5kCHiK5rM-1t3kW7oSubqMOt7d01ufB2k_DmpGPy9jh_nT0Vy5fF82y6LAaodC6aysuGQ9PIEqSTTliL3gNTGnldC4G-UWWrlHBK65Kha7F0HBvUApUFJsbk7pg7xPC5w5TNOuxiv680XAMIzhTne-r-SKW2yzbv15shdlsbfwwwc7jJSHO66T_4K8Q_0AzOi19omGji</recordid><startdate>20230509</startdate><enddate>20230509</enddate><creator>Sinaga, Rani F.</creator><creator>Sutarman</creator><creator>Tulus</creator><creator>Darnius, Open</creator><creator>Mawengkang, Herman</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20230509</creationdate><title>A framework of nonparametric regression to predict natural gas demand</title><author>Sinaga, Rani F. ; Sutarman ; Tulus ; Darnius, Open ; Mawengkang, Herman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p168t-b6f5b21bb5415d5d3aaeff1078e29933efb74c773d78840edce4d2ebe83e7a103</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Demand</topic><topic>Natural gas industry</topic><topic>Regression models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sinaga, Rani F.</creatorcontrib><creatorcontrib>Sutarman</creatorcontrib><creatorcontrib>Tulus</creatorcontrib><creatorcontrib>Darnius, Open</creatorcontrib><creatorcontrib>Mawengkang, Herman</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sinaga, Rani F.</au><au>Sutarman</au><au>Tulus</au><au>Darnius, Open</au><au>Mawengkang, Herman</au><au>Junaidi, Agus</au><au>Agustiani, Sarifah</au><au>Arifin, Yoseph Tajul</au><au>Baidawi, Taufik</au><au>Dalis, Sopiyan</au><au>Haryani</au><au>Hastuti, Dwi Puji</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A framework of nonparametric regression to predict natural gas demand</atitle><btitle>AIP Conference Proceedings</btitle><date>2023-05-09</date><risdate>2023</risdate><volume>2714</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>This paper investigates the use of nonparametric regression to forecast natural gas demand. The demand for natural gas is constantly rising to meet people’s daily needs. This causes natural gas capacity to dwindle day by day. The fluctuating increase in natural gas prices is one of the consequences of the current imbalance between natural gas production and consumption. This time, nonparametric regression was used to analyze the data. In this case, the nonparametric regression approach technique can be used as an alternative because its use is not tied to global assumptions. Although it does not respond quickly enough to natural gas demand, it can predict natural gas prices well by taking into account various existing factors. As a result, we require a nonparametric regression model that accurately predicts natural gas demand.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0128460</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP Conference Proceedings, 2023, Vol.2714 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2811320722
source AIP Journals Complete
subjects Demand
Natural gas industry
Regression models
title A framework of nonparametric regression to predict natural gas demand
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T19%3A09%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20framework%20of%20nonparametric%20regression%20to%20predict%20natural%20gas%20demand&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Sinaga,%20Rani%20F.&rft.date=2023-05-09&rft.volume=2714&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0128460&rft_dat=%3Cproquest_scita%3E2811320722%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2811320722&rft_id=info:pmid/&rfr_iscdi=true