Application of linear algebra in the study of sum of positive integral powers of first m-natural numbers

This research article explores on the summation of fixed positive integral powers of first m-positive integers. Authors are strongly believing that the following discussion depicts a method fromwhich one can easily compute the summation of fixed positive integral powers of first m-natural numbers. F...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Mahaboob, B., HariKrishna, Y., Bindu, P., Kishore, S. Nanda, Narayana, C., Rajaiah, M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2707
creator Mahaboob, B.
HariKrishna, Y.
Bindu, P.
Kishore, S. Nanda
Narayana, C.
Rajaiah, M.
description This research article explores on the summation of fixed positive integral powers of first m-positive integers. Authors are strongly believing that the following discussion depicts a method fromwhich one can easily compute the summation of fixed positive integral powers of first m-natural numbers. Furthermore they have given answers to two interesting questions in the research field of analytical number theory namely: Is the sum of fixed positive integral powers of first m-positive integers coincide with a polynomial?and Is such polynomial unique?. Some principles of linear algebra have been incorporated in this article to extract very interesting results regarding this summation. The uniqueness of the polynomial has been proved using Crammer’s rule also. Moreover a system of linear non homogeneous equations proposed here which help us to derive the formulas for the summations Σ n, Σ n2 , Σ n3…….
doi_str_mv 10.1063/5.0143358
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2811319697</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2811319697</sourcerecordid><originalsourceid>FETCH-LOGICAL-p133t-c91f8b9126a1f7396b9cc7fdfb482d875a458913e322cd2073d67d9c6b243ba33</originalsourceid><addsrcrecordid>eNotkEtLxDAUhYMoOI4u_AcFd0LH3Nw2j-Uw-IIBNwruSpqmMxn6MkmV-fe2OqsD9zucyzmE3AJdAeX4kK8oZIi5PCMLyHNIBQd-ThaUqixlGX5ekqsQDpQyJYRckP16GBpndHR9l_R10rjOap_oZmdLrxPXJXFvkxDH6jjjMLazDH1w0X3biUe787qZLj_Wh5nVzoeYtGmn4ziTbmzLCV2Ti1o3wd6cdEk-nh7fNy_p9u35dbPepgMgxtQoqGWpgHENtUDFS2WMqKu6zCSrpMh1lksFaJExUzEqsOKiUoaXU7lSIy7J3X_u4Puv0YZYHPrRd9PLgkkABMWVmFz3_65gXPwrXwzetdofC6DFvGSRF6cl8RcUl2YR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2811319697</pqid></control><display><type>conference_proceeding</type><title>Application of linear algebra in the study of sum of positive integral powers of first m-natural numbers</title><source>AIP Journals Complete</source><creator>Mahaboob, B. ; HariKrishna, Y. ; Bindu, P. ; Kishore, S. Nanda ; Narayana, C. ; Rajaiah, M.</creator><contributor>Bhagavan, V S ; Subrahmanyam, S V ; Deevi, Sateesh Kumar ; Rao, B V Appa</contributor><creatorcontrib>Mahaboob, B. ; HariKrishna, Y. ; Bindu, P. ; Kishore, S. Nanda ; Narayana, C. ; Rajaiah, M. ; Bhagavan, V S ; Subrahmanyam, S V ; Deevi, Sateesh Kumar ; Rao, B V Appa</creatorcontrib><description>This research article explores on the summation of fixed positive integral powers of first m-positive integers. Authors are strongly believing that the following discussion depicts a method fromwhich one can easily compute the summation of fixed positive integral powers of first m-natural numbers. Furthermore they have given answers to two interesting questions in the research field of analytical number theory namely: Is the sum of fixed positive integral powers of first m-positive integers coincide with a polynomial?and Is such polynomial unique?. Some principles of linear algebra have been incorporated in this article to extract very interesting results regarding this summation. The uniqueness of the polynomial has been proved using Crammer’s rule also. Moreover a system of linear non homogeneous equations proposed here which help us to derive the formulas for the summations Σ n, Σ n2 , Σ n3…….</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0143358</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Integers ; Linear algebra ; Number theory ; Polynomials ; Sums</subject><ispartof>AIP conference proceedings, 2023, Vol.2707 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0143358$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76127</link.rule.ids></links><search><contributor>Bhagavan, V S</contributor><contributor>Subrahmanyam, S V</contributor><contributor>Deevi, Sateesh Kumar</contributor><contributor>Rao, B V Appa</contributor><creatorcontrib>Mahaboob, B.</creatorcontrib><creatorcontrib>HariKrishna, Y.</creatorcontrib><creatorcontrib>Bindu, P.</creatorcontrib><creatorcontrib>Kishore, S. Nanda</creatorcontrib><creatorcontrib>Narayana, C.</creatorcontrib><creatorcontrib>Rajaiah, M.</creatorcontrib><title>Application of linear algebra in the study of sum of positive integral powers of first m-natural numbers</title><title>AIP conference proceedings</title><description>This research article explores on the summation of fixed positive integral powers of first m-positive integers. Authors are strongly believing that the following discussion depicts a method fromwhich one can easily compute the summation of fixed positive integral powers of first m-natural numbers. Furthermore they have given answers to two interesting questions in the research field of analytical number theory namely: Is the sum of fixed positive integral powers of first m-positive integers coincide with a polynomial?and Is such polynomial unique?. Some principles of linear algebra have been incorporated in this article to extract very interesting results regarding this summation. The uniqueness of the polynomial has been proved using Crammer’s rule also. Moreover a system of linear non homogeneous equations proposed here which help us to derive the formulas for the summations Σ n, Σ n2 , Σ n3…….</description><subject>Integers</subject><subject>Linear algebra</subject><subject>Number theory</subject><subject>Polynomials</subject><subject>Sums</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkEtLxDAUhYMoOI4u_AcFd0LH3Nw2j-Uw-IIBNwruSpqmMxn6MkmV-fe2OqsD9zucyzmE3AJdAeX4kK8oZIi5PCMLyHNIBQd-ThaUqixlGX5ekqsQDpQyJYRckP16GBpndHR9l_R10rjOap_oZmdLrxPXJXFvkxDH6jjjMLazDH1w0X3biUe787qZLj_Wh5nVzoeYtGmn4ziTbmzLCV2Ti1o3wd6cdEk-nh7fNy_p9u35dbPepgMgxtQoqGWpgHENtUDFS2WMqKu6zCSrpMh1lksFaJExUzEqsOKiUoaXU7lSIy7J3X_u4Puv0YZYHPrRd9PLgkkABMWVmFz3_65gXPwrXwzetdofC6DFvGSRF6cl8RcUl2YR</recordid><startdate>20230509</startdate><enddate>20230509</enddate><creator>Mahaboob, B.</creator><creator>HariKrishna, Y.</creator><creator>Bindu, P.</creator><creator>Kishore, S. Nanda</creator><creator>Narayana, C.</creator><creator>Rajaiah, M.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20230509</creationdate><title>Application of linear algebra in the study of sum of positive integral powers of first m-natural numbers</title><author>Mahaboob, B. ; HariKrishna, Y. ; Bindu, P. ; Kishore, S. Nanda ; Narayana, C. ; Rajaiah, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p133t-c91f8b9126a1f7396b9cc7fdfb482d875a458913e322cd2073d67d9c6b243ba33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Integers</topic><topic>Linear algebra</topic><topic>Number theory</topic><topic>Polynomials</topic><topic>Sums</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mahaboob, B.</creatorcontrib><creatorcontrib>HariKrishna, Y.</creatorcontrib><creatorcontrib>Bindu, P.</creatorcontrib><creatorcontrib>Kishore, S. Nanda</creatorcontrib><creatorcontrib>Narayana, C.</creatorcontrib><creatorcontrib>Rajaiah, M.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mahaboob, B.</au><au>HariKrishna, Y.</au><au>Bindu, P.</au><au>Kishore, S. Nanda</au><au>Narayana, C.</au><au>Rajaiah, M.</au><au>Bhagavan, V S</au><au>Subrahmanyam, S V</au><au>Deevi, Sateesh Kumar</au><au>Rao, B V Appa</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Application of linear algebra in the study of sum of positive integral powers of first m-natural numbers</atitle><btitle>AIP conference proceedings</btitle><date>2023-05-09</date><risdate>2023</risdate><volume>2707</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>This research article explores on the summation of fixed positive integral powers of first m-positive integers. Authors are strongly believing that the following discussion depicts a method fromwhich one can easily compute the summation of fixed positive integral powers of first m-natural numbers. Furthermore they have given answers to two interesting questions in the research field of analytical number theory namely: Is the sum of fixed positive integral powers of first m-positive integers coincide with a polynomial?and Is such polynomial unique?. Some principles of linear algebra have been incorporated in this article to extract very interesting results regarding this summation. The uniqueness of the polynomial has been proved using Crammer’s rule also. Moreover a system of linear non homogeneous equations proposed here which help us to derive the formulas for the summations Σ n, Σ n2 , Σ n3…….</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0143358</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2023, Vol.2707 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2811319697
source AIP Journals Complete
subjects Integers
Linear algebra
Number theory
Polynomials
Sums
title Application of linear algebra in the study of sum of positive integral powers of first m-natural numbers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T07%3A00%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Application%20of%20linear%20algebra%20in%20the%20study%20of%20sum%20of%20positive%20integral%20powers%20of%20first%20m-natural%20numbers&rft.btitle=AIP%20conference%20proceedings&rft.au=Mahaboob,%20B.&rft.date=2023-05-09&rft.volume=2707&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0143358&rft_dat=%3Cproquest_scita%3E2811319697%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2811319697&rft_id=info:pmid/&rfr_iscdi=true