Application of linear algebra in the study of sum of positive integral powers of first m-natural numbers
This research article explores on the summation of fixed positive integral powers of first m-positive integers. Authors are strongly believing that the following discussion depicts a method fromwhich one can easily compute the summation of fixed positive integral powers of first m-natural numbers. F...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2707 |
creator | Mahaboob, B. HariKrishna, Y. Bindu, P. Kishore, S. Nanda Narayana, C. Rajaiah, M. |
description | This research article explores on the summation of fixed positive integral powers of first m-positive integers. Authors are strongly believing that the following discussion depicts a method fromwhich one can easily compute the summation of fixed positive integral powers of first m-natural numbers. Furthermore they have given answers to two interesting questions in the research field of analytical number theory namely: Is the sum of fixed positive integral powers of first m-positive integers coincide with a polynomial?and Is such polynomial unique?. Some principles of linear algebra have been incorporated in this article to extract very interesting results regarding this summation. The uniqueness of the polynomial has been proved using Crammer’s rule also. Moreover a system of linear non homogeneous equations proposed here which help us to derive the formulas for the summations Σ n, Σ n2 , Σ n3……. |
doi_str_mv | 10.1063/5.0143358 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2811319697</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2811319697</sourcerecordid><originalsourceid>FETCH-LOGICAL-p133t-c91f8b9126a1f7396b9cc7fdfb482d875a458913e322cd2073d67d9c6b243ba33</originalsourceid><addsrcrecordid>eNotkEtLxDAUhYMoOI4u_AcFd0LH3Nw2j-Uw-IIBNwruSpqmMxn6MkmV-fe2OqsD9zucyzmE3AJdAeX4kK8oZIi5PCMLyHNIBQd-ThaUqixlGX5ekqsQDpQyJYRckP16GBpndHR9l_R10rjOap_oZmdLrxPXJXFvkxDH6jjjMLazDH1w0X3biUe787qZLj_Wh5nVzoeYtGmn4ziTbmzLCV2Ti1o3wd6cdEk-nh7fNy_p9u35dbPepgMgxtQoqGWpgHENtUDFS2WMqKu6zCSrpMh1lksFaJExUzEqsOKiUoaXU7lSIy7J3X_u4Puv0YZYHPrRd9PLgkkABMWVmFz3_65gXPwrXwzetdofC6DFvGSRF6cl8RcUl2YR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2811319697</pqid></control><display><type>conference_proceeding</type><title>Application of linear algebra in the study of sum of positive integral powers of first m-natural numbers</title><source>AIP Journals Complete</source><creator>Mahaboob, B. ; HariKrishna, Y. ; Bindu, P. ; Kishore, S. Nanda ; Narayana, C. ; Rajaiah, M.</creator><contributor>Bhagavan, V S ; Subrahmanyam, S V ; Deevi, Sateesh Kumar ; Rao, B V Appa</contributor><creatorcontrib>Mahaboob, B. ; HariKrishna, Y. ; Bindu, P. ; Kishore, S. Nanda ; Narayana, C. ; Rajaiah, M. ; Bhagavan, V S ; Subrahmanyam, S V ; Deevi, Sateesh Kumar ; Rao, B V Appa</creatorcontrib><description>This research article explores on the summation of fixed positive integral powers of first m-positive integers. Authors are strongly believing that the following discussion depicts a method fromwhich one can easily compute the summation of fixed positive integral powers of first m-natural numbers. Furthermore they have given answers to two interesting questions in the research field of analytical number theory namely: Is the sum of fixed positive integral powers of first m-positive integers coincide with a polynomial?and Is such polynomial unique?. Some principles of linear algebra have been incorporated in this article to extract very interesting results regarding this summation. The uniqueness of the polynomial has been proved using Crammer’s rule also. Moreover a system of linear non homogeneous equations proposed here which help us to derive the formulas for the summations Σ n, Σ n2 , Σ n3…….</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0143358</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Integers ; Linear algebra ; Number theory ; Polynomials ; Sums</subject><ispartof>AIP conference proceedings, 2023, Vol.2707 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0143358$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76127</link.rule.ids></links><search><contributor>Bhagavan, V S</contributor><contributor>Subrahmanyam, S V</contributor><contributor>Deevi, Sateesh Kumar</contributor><contributor>Rao, B V Appa</contributor><creatorcontrib>Mahaboob, B.</creatorcontrib><creatorcontrib>HariKrishna, Y.</creatorcontrib><creatorcontrib>Bindu, P.</creatorcontrib><creatorcontrib>Kishore, S. Nanda</creatorcontrib><creatorcontrib>Narayana, C.</creatorcontrib><creatorcontrib>Rajaiah, M.</creatorcontrib><title>Application of linear algebra in the study of sum of positive integral powers of first m-natural numbers</title><title>AIP conference proceedings</title><description>This research article explores on the summation of fixed positive integral powers of first m-positive integers. Authors are strongly believing that the following discussion depicts a method fromwhich one can easily compute the summation of fixed positive integral powers of first m-natural numbers. Furthermore they have given answers to two interesting questions in the research field of analytical number theory namely: Is the sum of fixed positive integral powers of first m-positive integers coincide with a polynomial?and Is such polynomial unique?. Some principles of linear algebra have been incorporated in this article to extract very interesting results regarding this summation. The uniqueness of the polynomial has been proved using Crammer’s rule also. Moreover a system of linear non homogeneous equations proposed here which help us to derive the formulas for the summations Σ n, Σ n2 , Σ n3…….</description><subject>Integers</subject><subject>Linear algebra</subject><subject>Number theory</subject><subject>Polynomials</subject><subject>Sums</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkEtLxDAUhYMoOI4u_AcFd0LH3Nw2j-Uw-IIBNwruSpqmMxn6MkmV-fe2OqsD9zucyzmE3AJdAeX4kK8oZIi5PCMLyHNIBQd-ThaUqixlGX5ekqsQDpQyJYRckP16GBpndHR9l_R10rjOap_oZmdLrxPXJXFvkxDH6jjjMLazDH1w0X3biUe787qZLj_Wh5nVzoeYtGmn4ziTbmzLCV2Ti1o3wd6cdEk-nh7fNy_p9u35dbPepgMgxtQoqGWpgHENtUDFS2WMqKu6zCSrpMh1lksFaJExUzEqsOKiUoaXU7lSIy7J3X_u4Puv0YZYHPrRd9PLgkkABMWVmFz3_65gXPwrXwzetdofC6DFvGSRF6cl8RcUl2YR</recordid><startdate>20230509</startdate><enddate>20230509</enddate><creator>Mahaboob, B.</creator><creator>HariKrishna, Y.</creator><creator>Bindu, P.</creator><creator>Kishore, S. Nanda</creator><creator>Narayana, C.</creator><creator>Rajaiah, M.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20230509</creationdate><title>Application of linear algebra in the study of sum of positive integral powers of first m-natural numbers</title><author>Mahaboob, B. ; HariKrishna, Y. ; Bindu, P. ; Kishore, S. Nanda ; Narayana, C. ; Rajaiah, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p133t-c91f8b9126a1f7396b9cc7fdfb482d875a458913e322cd2073d67d9c6b243ba33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Integers</topic><topic>Linear algebra</topic><topic>Number theory</topic><topic>Polynomials</topic><topic>Sums</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mahaboob, B.</creatorcontrib><creatorcontrib>HariKrishna, Y.</creatorcontrib><creatorcontrib>Bindu, P.</creatorcontrib><creatorcontrib>Kishore, S. Nanda</creatorcontrib><creatorcontrib>Narayana, C.</creatorcontrib><creatorcontrib>Rajaiah, M.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mahaboob, B.</au><au>HariKrishna, Y.</au><au>Bindu, P.</au><au>Kishore, S. Nanda</au><au>Narayana, C.</au><au>Rajaiah, M.</au><au>Bhagavan, V S</au><au>Subrahmanyam, S V</au><au>Deevi, Sateesh Kumar</au><au>Rao, B V Appa</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Application of linear algebra in the study of sum of positive integral powers of first m-natural numbers</atitle><btitle>AIP conference proceedings</btitle><date>2023-05-09</date><risdate>2023</risdate><volume>2707</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>This research article explores on the summation of fixed positive integral powers of first m-positive integers. Authors are strongly believing that the following discussion depicts a method fromwhich one can easily compute the summation of fixed positive integral powers of first m-natural numbers. Furthermore they have given answers to two interesting questions in the research field of analytical number theory namely: Is the sum of fixed positive integral powers of first m-positive integers coincide with a polynomial?and Is such polynomial unique?. Some principles of linear algebra have been incorporated in this article to extract very interesting results regarding this summation. The uniqueness of the polynomial has been proved using Crammer’s rule also. Moreover a system of linear non homogeneous equations proposed here which help us to derive the formulas for the summations Σ n, Σ n2 , Σ n3…….</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0143358</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2023, Vol.2707 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_2811319697 |
source | AIP Journals Complete |
subjects | Integers Linear algebra Number theory Polynomials Sums |
title | Application of linear algebra in the study of sum of positive integral powers of first m-natural numbers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T07%3A00%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Application%20of%20linear%20algebra%20in%20the%20study%20of%20sum%20of%20positive%20integral%20powers%20of%20first%20m-natural%20numbers&rft.btitle=AIP%20conference%20proceedings&rft.au=Mahaboob,%20B.&rft.date=2023-05-09&rft.volume=2707&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0143358&rft_dat=%3Cproquest_scita%3E2811319697%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2811319697&rft_id=info:pmid/&rfr_iscdi=true |