Photoinduced Microwave Permittivity of Semiconductors: Exciton Mechanism

Significant differences observed in the behavior of photoinduced permittivity ε of semiconductors in the gigahertz (GHz) and terahertz (THz) ranges are explained within the framework of the exciton mechanism by the different position of these ranges relative to the frequencies of exciton interlevel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of communications technology & electronics 2023-02, Vol.68 (2), p.151-155
Hauptverfasser: Butylkin, V. S., Fisher, P. S., Kraftmakher, G. A., Kazantsev, Yu. N., Kalenov, D. S., Mal’tsev, V. P., Parkhomenko, M. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 155
container_issue 2
container_start_page 151
container_title Journal of communications technology & electronics
container_volume 68
creator Butylkin, V. S.
Fisher, P. S.
Kraftmakher, G. A.
Kazantsev, Yu. N.
Kalenov, D. S.
Mal’tsev, V. P.
Parkhomenko, M. P.
description Significant differences observed in the behavior of photoinduced permittivity ε of semiconductors in the gigahertz (GHz) and terahertz (THz) ranges are explained within the framework of the exciton mechanism by the different position of these ranges relative to the frequencies of exciton interlevel transitions. The measurements in the GHz range of the photoinduced changes of quantities Imε( P λ ) and Reε( P λ ) of CdS, CdSe and Si samples in a waveguide resonator ( f = 4.7 GHz) and transmittance T of Si samples in free space ( f = 8–36 GHz ) under fiber-optic irradiation ( P λ = 0–370 mW and λ = 0.97 µm) that exhibit non-Drude response prove the theoretical conclusions: an increase in Reε GHz ( P λ ) with increasing P λ and an increase in transmittance T with decreasing frequency f at fixed power P λ .
doi_str_mv 10.1134/S106422692302002X
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2811254343</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A748594243</galeid><sourcerecordid>A748594243</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-4b3f4a30e4091075f3a05fa5860135ffbacc14e414da5e58d0c9e6f6b6f4519b3</originalsourceid><addsrcrecordid>eNp1kVtLwzAUgIsoeP0BvhV8EuzMfatvItMNNhSn4FtJ05Mu4hpN0un-vZkVdIgEknDO9-VwcpLkGKMexpSdzzASjBCRE4oIQuRpK9nDnPNMcN7fjveYztb53WTf-2eEaC4Q3UtGd3MbrGmqVkGVTo1y9l0uIb0DtzAhmKUJq9TqdAYLo-waC9b5i3T4oUywTToFNZeN8YvDZEfLFw9H3-dB8ng9fLgaZZPbm_HV5SRTjIiQsZJqJikChnKM-lxTibiWfCAQplzrUiqFGTDMKsmBDyqkchBalEIzjvOSHiQn3buvzr614EPxbFvXxJIFGWBMOKOMRqrXUbV8gcI02gYnVVxV1wdoE-OXfTbgOSNfwumGEJkAH6GWrffFeHa_yZ79YsvWmwZ83Lyp58F3ygaOOzz-rfcOdPHqzEK6VYFRsR5e8Wd40SGd4yPb1OB-uvxf-gTCVJov</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2811254343</pqid></control><display><type>article</type><title>Photoinduced Microwave Permittivity of Semiconductors: Exciton Mechanism</title><source>SpringerLink Journals - AutoHoldings</source><creator>Butylkin, V. S. ; Fisher, P. S. ; Kraftmakher, G. A. ; Kazantsev, Yu. N. ; Kalenov, D. S. ; Mal’tsev, V. P. ; Parkhomenko, M. P.</creator><creatorcontrib>Butylkin, V. S. ; Fisher, P. S. ; Kraftmakher, G. A. ; Kazantsev, Yu. N. ; Kalenov, D. S. ; Mal’tsev, V. P. ; Parkhomenko, M. P.</creatorcontrib><description>Significant differences observed in the behavior of photoinduced permittivity ε of semiconductors in the gigahertz (GHz) and terahertz (THz) ranges are explained within the framework of the exciton mechanism by the different position of these ranges relative to the frequencies of exciton interlevel transitions. The measurements in the GHz range of the photoinduced changes of quantities Imε( P λ ) and Reε( P λ ) of CdS, CdSe and Si samples in a waveguide resonator ( f = 4.7 GHz) and transmittance T of Si samples in free space ( f = 8–36 GHz ) under fiber-optic irradiation ( P λ = 0–370 mW and λ = 0.97 µm) that exhibit non-Drude response prove the theoretical conclusions: an increase in Reε GHz ( P λ ) with increasing P λ and an increase in transmittance T with decreasing frequency f at fixed power P λ .</description><identifier>ISSN: 1064-2269</identifier><identifier>EISSN: 1555-6557</identifier><identifier>DOI: 10.1134/S106422692302002X</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Cadmium selenides ; Communications Engineering ; Engineering ; Equipment and supplies ; Excitons ; Fiber optics ; Networks ; Permittivity ; Radio Phenomena in Solids and Plasma ; Semiconductors ; Terahertz frequencies ; Transmittance ; Waveguides</subject><ispartof>Journal of communications technology &amp; electronics, 2023-02, Vol.68 (2), p.151-155</ispartof><rights>Pleiades Publishing, Inc. 2023. ISSN 1064-2269, Journal of Communications Technology and Electronics, 2023, Vol. 68, No. 2, pp. 151–155. © Pleiades Publishing, Inc., 2023. Russian Text © The Author(s), 2023, published in Radiotekhnika i Elektronika, 2023, Vol. 68, No. 2, pp. 152–156.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-4b3f4a30e4091075f3a05fa5860135ffbacc14e414da5e58d0c9e6f6b6f4519b3</citedby><cites>FETCH-LOGICAL-c426t-4b3f4a30e4091075f3a05fa5860135ffbacc14e414da5e58d0c9e6f6b6f4519b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S106422692302002X$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S106422692302002X$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Butylkin, V. S.</creatorcontrib><creatorcontrib>Fisher, P. S.</creatorcontrib><creatorcontrib>Kraftmakher, G. A.</creatorcontrib><creatorcontrib>Kazantsev, Yu. N.</creatorcontrib><creatorcontrib>Kalenov, D. S.</creatorcontrib><creatorcontrib>Mal’tsev, V. P.</creatorcontrib><creatorcontrib>Parkhomenko, M. P.</creatorcontrib><title>Photoinduced Microwave Permittivity of Semiconductors: Exciton Mechanism</title><title>Journal of communications technology &amp; electronics</title><addtitle>J. Commun. Technol. Electron</addtitle><description>Significant differences observed in the behavior of photoinduced permittivity ε of semiconductors in the gigahertz (GHz) and terahertz (THz) ranges are explained within the framework of the exciton mechanism by the different position of these ranges relative to the frequencies of exciton interlevel transitions. The measurements in the GHz range of the photoinduced changes of quantities Imε( P λ ) and Reε( P λ ) of CdS, CdSe and Si samples in a waveguide resonator ( f = 4.7 GHz) and transmittance T of Si samples in free space ( f = 8–36 GHz ) under fiber-optic irradiation ( P λ = 0–370 mW and λ = 0.97 µm) that exhibit non-Drude response prove the theoretical conclusions: an increase in Reε GHz ( P λ ) with increasing P λ and an increase in transmittance T with decreasing frequency f at fixed power P λ .</description><subject>Cadmium selenides</subject><subject>Communications Engineering</subject><subject>Engineering</subject><subject>Equipment and supplies</subject><subject>Excitons</subject><subject>Fiber optics</subject><subject>Networks</subject><subject>Permittivity</subject><subject>Radio Phenomena in Solids and Plasma</subject><subject>Semiconductors</subject><subject>Terahertz frequencies</subject><subject>Transmittance</subject><subject>Waveguides</subject><issn>1064-2269</issn><issn>1555-6557</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><recordid>eNp1kVtLwzAUgIsoeP0BvhV8EuzMfatvItMNNhSn4FtJ05Mu4hpN0un-vZkVdIgEknDO9-VwcpLkGKMexpSdzzASjBCRE4oIQuRpK9nDnPNMcN7fjveYztb53WTf-2eEaC4Q3UtGd3MbrGmqVkGVTo1y9l0uIb0DtzAhmKUJq9TqdAYLo-waC9b5i3T4oUywTToFNZeN8YvDZEfLFw9H3-dB8ng9fLgaZZPbm_HV5SRTjIiQsZJqJikChnKM-lxTibiWfCAQplzrUiqFGTDMKsmBDyqkchBalEIzjvOSHiQn3buvzr614EPxbFvXxJIFGWBMOKOMRqrXUbV8gcI02gYnVVxV1wdoE-OXfTbgOSNfwumGEJkAH6GWrffFeHa_yZ79YsvWmwZ83Lyp58F3ygaOOzz-rfcOdPHqzEK6VYFRsR5e8Wd40SGd4yPb1OB-uvxf-gTCVJov</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Butylkin, V. S.</creator><creator>Fisher, P. S.</creator><creator>Kraftmakher, G. A.</creator><creator>Kazantsev, Yu. N.</creator><creator>Kalenov, D. S.</creator><creator>Mal’tsev, V. P.</creator><creator>Parkhomenko, M. P.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>ISR</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20230201</creationdate><title>Photoinduced Microwave Permittivity of Semiconductors: Exciton Mechanism</title><author>Butylkin, V. S. ; Fisher, P. S. ; Kraftmakher, G. A. ; Kazantsev, Yu. N. ; Kalenov, D. S. ; Mal’tsev, V. P. ; Parkhomenko, M. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-4b3f4a30e4091075f3a05fa5860135ffbacc14e414da5e58d0c9e6f6b6f4519b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cadmium selenides</topic><topic>Communications Engineering</topic><topic>Engineering</topic><topic>Equipment and supplies</topic><topic>Excitons</topic><topic>Fiber optics</topic><topic>Networks</topic><topic>Permittivity</topic><topic>Radio Phenomena in Solids and Plasma</topic><topic>Semiconductors</topic><topic>Terahertz frequencies</topic><topic>Transmittance</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Butylkin, V. S.</creatorcontrib><creatorcontrib>Fisher, P. S.</creatorcontrib><creatorcontrib>Kraftmakher, G. A.</creatorcontrib><creatorcontrib>Kazantsev, Yu. N.</creatorcontrib><creatorcontrib>Kalenov, D. S.</creatorcontrib><creatorcontrib>Mal’tsev, V. P.</creatorcontrib><creatorcontrib>Parkhomenko, M. P.</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>Gale In Context: Science</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of communications technology &amp; electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Butylkin, V. S.</au><au>Fisher, P. S.</au><au>Kraftmakher, G. A.</au><au>Kazantsev, Yu. N.</au><au>Kalenov, D. S.</au><au>Mal’tsev, V. P.</au><au>Parkhomenko, M. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photoinduced Microwave Permittivity of Semiconductors: Exciton Mechanism</atitle><jtitle>Journal of communications technology &amp; electronics</jtitle><stitle>J. Commun. Technol. Electron</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>68</volume><issue>2</issue><spage>151</spage><epage>155</epage><pages>151-155</pages><issn>1064-2269</issn><eissn>1555-6557</eissn><abstract>Significant differences observed in the behavior of photoinduced permittivity ε of semiconductors in the gigahertz (GHz) and terahertz (THz) ranges are explained within the framework of the exciton mechanism by the different position of these ranges relative to the frequencies of exciton interlevel transitions. The measurements in the GHz range of the photoinduced changes of quantities Imε( P λ ) and Reε( P λ ) of CdS, CdSe and Si samples in a waveguide resonator ( f = 4.7 GHz) and transmittance T of Si samples in free space ( f = 8–36 GHz ) under fiber-optic irradiation ( P λ = 0–370 mW and λ = 0.97 µm) that exhibit non-Drude response prove the theoretical conclusions: an increase in Reε GHz ( P λ ) with increasing P λ and an increase in transmittance T with decreasing frequency f at fixed power P λ .</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S106422692302002X</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1064-2269
ispartof Journal of communications technology & electronics, 2023-02, Vol.68 (2), p.151-155
issn 1064-2269
1555-6557
language eng
recordid cdi_proquest_journals_2811254343
source SpringerLink Journals - AutoHoldings
subjects Cadmium selenides
Communications Engineering
Engineering
Equipment and supplies
Excitons
Fiber optics
Networks
Permittivity
Radio Phenomena in Solids and Plasma
Semiconductors
Terahertz frequencies
Transmittance
Waveguides
title Photoinduced Microwave Permittivity of Semiconductors: Exciton Mechanism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T21%3A56%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photoinduced%20Microwave%20Permittivity%20of%20Semiconductors:%20Exciton%20Mechanism&rft.jtitle=Journal%20of%20communications%20technology%20&%20electronics&rft.au=Butylkin,%20V.%20S.&rft.date=2023-02-01&rft.volume=68&rft.issue=2&rft.spage=151&rft.epage=155&rft.pages=151-155&rft.issn=1064-2269&rft.eissn=1555-6557&rft_id=info:doi/10.1134/S106422692302002X&rft_dat=%3Cgale_proqu%3EA748594243%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2811254343&rft_id=info:pmid/&rft_galeid=A748594243&rfr_iscdi=true