Photoinduced Microwave Permittivity of Semiconductors: Exciton Mechanism
Significant differences observed in the behavior of photoinduced permittivity ε of semiconductors in the gigahertz (GHz) and terahertz (THz) ranges are explained within the framework of the exciton mechanism by the different position of these ranges relative to the frequencies of exciton interlevel...
Gespeichert in:
Veröffentlicht in: | Journal of communications technology & electronics 2023-02, Vol.68 (2), p.151-155 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 155 |
---|---|
container_issue | 2 |
container_start_page | 151 |
container_title | Journal of communications technology & electronics |
container_volume | 68 |
creator | Butylkin, V. S. Fisher, P. S. Kraftmakher, G. A. Kazantsev, Yu. N. Kalenov, D. S. Mal’tsev, V. P. Parkhomenko, M. P. |
description | Significant differences observed in the behavior of photoinduced permittivity ε of semiconductors in the gigahertz (GHz) and terahertz (THz) ranges are explained within the framework of the exciton mechanism by the different position of these ranges relative to the frequencies of exciton interlevel transitions. The measurements in the GHz range of the photoinduced changes of quantities Imε(
P
λ
) and Reε(
P
λ
) of CdS, CdSe and Si samples in a waveguide resonator (
f
= 4.7 GHz) and transmittance
T
of Si samples in free space (
f
= 8–36 GHz ) under fiber-optic irradiation (
P
λ
= 0–370 mW and λ = 0.97 µm) that exhibit non-Drude response prove the theoretical conclusions: an increase in Reε
GHz
(
P
λ
) with increasing
P
λ
and an increase in transmittance
T
with decreasing frequency
f
at fixed power
P
λ
. |
doi_str_mv | 10.1134/S106422692302002X |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2811254343</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A748594243</galeid><sourcerecordid>A748594243</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-4b3f4a30e4091075f3a05fa5860135ffbacc14e414da5e58d0c9e6f6b6f4519b3</originalsourceid><addsrcrecordid>eNp1kVtLwzAUgIsoeP0BvhV8EuzMfatvItMNNhSn4FtJ05Mu4hpN0un-vZkVdIgEknDO9-VwcpLkGKMexpSdzzASjBCRE4oIQuRpK9nDnPNMcN7fjveYztb53WTf-2eEaC4Q3UtGd3MbrGmqVkGVTo1y9l0uIb0DtzAhmKUJq9TqdAYLo-waC9b5i3T4oUywTToFNZeN8YvDZEfLFw9H3-dB8ng9fLgaZZPbm_HV5SRTjIiQsZJqJikChnKM-lxTibiWfCAQplzrUiqFGTDMKsmBDyqkchBalEIzjvOSHiQn3buvzr614EPxbFvXxJIFGWBMOKOMRqrXUbV8gcI02gYnVVxV1wdoE-OXfTbgOSNfwumGEJkAH6GWrffFeHa_yZ79YsvWmwZ83Lyp58F3ygaOOzz-rfcOdPHqzEK6VYFRsR5e8Wd40SGd4yPb1OB-uvxf-gTCVJov</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2811254343</pqid></control><display><type>article</type><title>Photoinduced Microwave Permittivity of Semiconductors: Exciton Mechanism</title><source>SpringerLink Journals - AutoHoldings</source><creator>Butylkin, V. S. ; Fisher, P. S. ; Kraftmakher, G. A. ; Kazantsev, Yu. N. ; Kalenov, D. S. ; Mal’tsev, V. P. ; Parkhomenko, M. P.</creator><creatorcontrib>Butylkin, V. S. ; Fisher, P. S. ; Kraftmakher, G. A. ; Kazantsev, Yu. N. ; Kalenov, D. S. ; Mal’tsev, V. P. ; Parkhomenko, M. P.</creatorcontrib><description>Significant differences observed in the behavior of photoinduced permittivity ε of semiconductors in the gigahertz (GHz) and terahertz (THz) ranges are explained within the framework of the exciton mechanism by the different position of these ranges relative to the frequencies of exciton interlevel transitions. The measurements in the GHz range of the photoinduced changes of quantities Imε(
P
λ
) and Reε(
P
λ
) of CdS, CdSe and Si samples in a waveguide resonator (
f
= 4.7 GHz) and transmittance
T
of Si samples in free space (
f
= 8–36 GHz ) under fiber-optic irradiation (
P
λ
= 0–370 mW and λ = 0.97 µm) that exhibit non-Drude response prove the theoretical conclusions: an increase in Reε
GHz
(
P
λ
) with increasing
P
λ
and an increase in transmittance
T
with decreasing frequency
f
at fixed power
P
λ
.</description><identifier>ISSN: 1064-2269</identifier><identifier>EISSN: 1555-6557</identifier><identifier>DOI: 10.1134/S106422692302002X</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Cadmium selenides ; Communications Engineering ; Engineering ; Equipment and supplies ; Excitons ; Fiber optics ; Networks ; Permittivity ; Radio Phenomena in Solids and Plasma ; Semiconductors ; Terahertz frequencies ; Transmittance ; Waveguides</subject><ispartof>Journal of communications technology & electronics, 2023-02, Vol.68 (2), p.151-155</ispartof><rights>Pleiades Publishing, Inc. 2023. ISSN 1064-2269, Journal of Communications Technology and Electronics, 2023, Vol. 68, No. 2, pp. 151–155. © Pleiades Publishing, Inc., 2023. Russian Text © The Author(s), 2023, published in Radiotekhnika i Elektronika, 2023, Vol. 68, No. 2, pp. 152–156.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-4b3f4a30e4091075f3a05fa5860135ffbacc14e414da5e58d0c9e6f6b6f4519b3</citedby><cites>FETCH-LOGICAL-c426t-4b3f4a30e4091075f3a05fa5860135ffbacc14e414da5e58d0c9e6f6b6f4519b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S106422692302002X$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S106422692302002X$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Butylkin, V. S.</creatorcontrib><creatorcontrib>Fisher, P. S.</creatorcontrib><creatorcontrib>Kraftmakher, G. A.</creatorcontrib><creatorcontrib>Kazantsev, Yu. N.</creatorcontrib><creatorcontrib>Kalenov, D. S.</creatorcontrib><creatorcontrib>Mal’tsev, V. P.</creatorcontrib><creatorcontrib>Parkhomenko, M. P.</creatorcontrib><title>Photoinduced Microwave Permittivity of Semiconductors: Exciton Mechanism</title><title>Journal of communications technology & electronics</title><addtitle>J. Commun. Technol. Electron</addtitle><description>Significant differences observed in the behavior of photoinduced permittivity ε of semiconductors in the gigahertz (GHz) and terahertz (THz) ranges are explained within the framework of the exciton mechanism by the different position of these ranges relative to the frequencies of exciton interlevel transitions. The measurements in the GHz range of the photoinduced changes of quantities Imε(
P
λ
) and Reε(
P
λ
) of CdS, CdSe and Si samples in a waveguide resonator (
f
= 4.7 GHz) and transmittance
T
of Si samples in free space (
f
= 8–36 GHz ) under fiber-optic irradiation (
P
λ
= 0–370 mW and λ = 0.97 µm) that exhibit non-Drude response prove the theoretical conclusions: an increase in Reε
GHz
(
P
λ
) with increasing
P
λ
and an increase in transmittance
T
with decreasing frequency
f
at fixed power
P
λ
.</description><subject>Cadmium selenides</subject><subject>Communications Engineering</subject><subject>Engineering</subject><subject>Equipment and supplies</subject><subject>Excitons</subject><subject>Fiber optics</subject><subject>Networks</subject><subject>Permittivity</subject><subject>Radio Phenomena in Solids and Plasma</subject><subject>Semiconductors</subject><subject>Terahertz frequencies</subject><subject>Transmittance</subject><subject>Waveguides</subject><issn>1064-2269</issn><issn>1555-6557</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><recordid>eNp1kVtLwzAUgIsoeP0BvhV8EuzMfatvItMNNhSn4FtJ05Mu4hpN0un-vZkVdIgEknDO9-VwcpLkGKMexpSdzzASjBCRE4oIQuRpK9nDnPNMcN7fjveYztb53WTf-2eEaC4Q3UtGd3MbrGmqVkGVTo1y9l0uIb0DtzAhmKUJq9TqdAYLo-waC9b5i3T4oUywTToFNZeN8YvDZEfLFw9H3-dB8ng9fLgaZZPbm_HV5SRTjIiQsZJqJikChnKM-lxTibiWfCAQplzrUiqFGTDMKsmBDyqkchBalEIzjvOSHiQn3buvzr614EPxbFvXxJIFGWBMOKOMRqrXUbV8gcI02gYnVVxV1wdoE-OXfTbgOSNfwumGEJkAH6GWrffFeHa_yZ79YsvWmwZ83Lyp58F3ygaOOzz-rfcOdPHqzEK6VYFRsR5e8Wd40SGd4yPb1OB-uvxf-gTCVJov</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Butylkin, V. S.</creator><creator>Fisher, P. S.</creator><creator>Kraftmakher, G. A.</creator><creator>Kazantsev, Yu. N.</creator><creator>Kalenov, D. S.</creator><creator>Mal’tsev, V. P.</creator><creator>Parkhomenko, M. P.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>ISR</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20230201</creationdate><title>Photoinduced Microwave Permittivity of Semiconductors: Exciton Mechanism</title><author>Butylkin, V. S. ; Fisher, P. S. ; Kraftmakher, G. A. ; Kazantsev, Yu. N. ; Kalenov, D. S. ; Mal’tsev, V. P. ; Parkhomenko, M. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-4b3f4a30e4091075f3a05fa5860135ffbacc14e414da5e58d0c9e6f6b6f4519b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cadmium selenides</topic><topic>Communications Engineering</topic><topic>Engineering</topic><topic>Equipment and supplies</topic><topic>Excitons</topic><topic>Fiber optics</topic><topic>Networks</topic><topic>Permittivity</topic><topic>Radio Phenomena in Solids and Plasma</topic><topic>Semiconductors</topic><topic>Terahertz frequencies</topic><topic>Transmittance</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Butylkin, V. S.</creatorcontrib><creatorcontrib>Fisher, P. S.</creatorcontrib><creatorcontrib>Kraftmakher, G. A.</creatorcontrib><creatorcontrib>Kazantsev, Yu. N.</creatorcontrib><creatorcontrib>Kalenov, D. S.</creatorcontrib><creatorcontrib>Mal’tsev, V. P.</creatorcontrib><creatorcontrib>Parkhomenko, M. P.</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>Gale In Context: Science</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of communications technology & electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Butylkin, V. S.</au><au>Fisher, P. S.</au><au>Kraftmakher, G. A.</au><au>Kazantsev, Yu. N.</au><au>Kalenov, D. S.</au><au>Mal’tsev, V. P.</au><au>Parkhomenko, M. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photoinduced Microwave Permittivity of Semiconductors: Exciton Mechanism</atitle><jtitle>Journal of communications technology & electronics</jtitle><stitle>J. Commun. Technol. Electron</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>68</volume><issue>2</issue><spage>151</spage><epage>155</epage><pages>151-155</pages><issn>1064-2269</issn><eissn>1555-6557</eissn><abstract>Significant differences observed in the behavior of photoinduced permittivity ε of semiconductors in the gigahertz (GHz) and terahertz (THz) ranges are explained within the framework of the exciton mechanism by the different position of these ranges relative to the frequencies of exciton interlevel transitions. The measurements in the GHz range of the photoinduced changes of quantities Imε(
P
λ
) and Reε(
P
λ
) of CdS, CdSe and Si samples in a waveguide resonator (
f
= 4.7 GHz) and transmittance
T
of Si samples in free space (
f
= 8–36 GHz ) under fiber-optic irradiation (
P
λ
= 0–370 mW and λ = 0.97 µm) that exhibit non-Drude response prove the theoretical conclusions: an increase in Reε
GHz
(
P
λ
) with increasing
P
λ
and an increase in transmittance
T
with decreasing frequency
f
at fixed power
P
λ
.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S106422692302002X</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-2269 |
ispartof | Journal of communications technology & electronics, 2023-02, Vol.68 (2), p.151-155 |
issn | 1064-2269 1555-6557 |
language | eng |
recordid | cdi_proquest_journals_2811254343 |
source | SpringerLink Journals - AutoHoldings |
subjects | Cadmium selenides Communications Engineering Engineering Equipment and supplies Excitons Fiber optics Networks Permittivity Radio Phenomena in Solids and Plasma Semiconductors Terahertz frequencies Transmittance Waveguides |
title | Photoinduced Microwave Permittivity of Semiconductors: Exciton Mechanism |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T21%3A56%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photoinduced%20Microwave%20Permittivity%20of%20Semiconductors:%20Exciton%20Mechanism&rft.jtitle=Journal%20of%20communications%20technology%20&%20electronics&rft.au=Butylkin,%20V.%20S.&rft.date=2023-02-01&rft.volume=68&rft.issue=2&rft.spage=151&rft.epage=155&rft.pages=151-155&rft.issn=1064-2269&rft.eissn=1555-6557&rft_id=info:doi/10.1134/S106422692302002X&rft_dat=%3Cgale_proqu%3EA748594243%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2811254343&rft_id=info:pmid/&rft_galeid=A748594243&rfr_iscdi=true |