MVST-SciVis: narrative visualization and analysis of compound events in scientific data

There is a large volume of spatiotemporally correlated multivariate data in multiple layers of the earth’s environmental system. Compound events arise from the interaction of multiple variables. Current approaches employed by earth scientists lack the flexibility to identify the drivers and correspo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of visualization 2023-06, Vol.26 (3), p.687-703
Hauptverfasser: Lu, Xuyi, Xu, Yuan, Li, Guan, Chen, Yi, Shan, Guihua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 703
container_issue 3
container_start_page 687
container_title Journal of visualization
container_volume 26
creator Lu, Xuyi
Xu, Yuan
Li, Guan
Chen, Yi
Shan, Guihua
description There is a large volume of spatiotemporally correlated multivariate data in multiple layers of the earth’s environmental system. Compound events arise from the interaction of multiple variables. Current approaches employed by earth scientists lack the flexibility to identify the drivers and corresponding impacts of different events. In this paper, we present MVST-SciVis (MultiVariate SpatioTemporal Scientific data Visualization), a new visual analytics prototype to help scientists explore spatiotemporal correlations among multiple variables, and analyze the drivers and influences of different compound events. MVST-SciVis provides coordinated maps, scatterplots, line charts and bar charts to support a three-level multi-granularity complex visual analysis pipeline. MVST-SciVis also provides a storyline visualization tailored for scientific data that abstracts inter-entity relationships and the driving components information of compound events. Our case studies with the data from two ecosystem circles of climate and agriculture illustrate the usefulness and effectiveness of MVST-SciVis. Graphical abstract
doi_str_mv 10.1007/s12650-022-00893-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2811253900</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2811253900</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-3198c1065b538bb057c7f8ae37108618eb46b78139f5ed67629a7112f365d9aa3</originalsourceid><addsrcrecordid>eNp9UE1LAzEQDaJgrf4BTwHP0UnSfKw3KX5BxUNrPYZsNisp7W5Ndgv115u6gjcPM_NmeO8xPIQuKVxTAHWTKJMCCDBGAHTBCRyhEdVKEF0ocZwxn3Ci8-EUnaW0AmB0ougIvb8s5wsyd2EZ0i1ubIy2CzuPdyH1dh2-8tY22DZVLrvep5BwW2PXbrZtn49-55su4dDg5EKGoQ4OV7az5-iktuvkL37nGL093C-mT2T2-vg8vZsRx2nRkdy0oyBFKbguSxDKqVpbzxUFLan25USWSlNe1MJXUklWWEUpq7kUVWEtH6OrwXcb28_ep86s2j7mV5NhOhMFLwAyiw0sF9uUoq_NNoaNjXtDwRwCNEOAJgdofgI0BxEfRCmTmw8f_6z_UX0DLuNypQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2811253900</pqid></control><display><type>article</type><title>MVST-SciVis: narrative visualization and analysis of compound events in scientific data</title><source>SpringerNature Journals</source><creator>Lu, Xuyi ; Xu, Yuan ; Li, Guan ; Chen, Yi ; Shan, Guihua</creator><creatorcontrib>Lu, Xuyi ; Xu, Yuan ; Li, Guan ; Chen, Yi ; Shan, Guihua</creatorcontrib><description>There is a large volume of spatiotemporally correlated multivariate data in multiple layers of the earth’s environmental system. Compound events arise from the interaction of multiple variables. Current approaches employed by earth scientists lack the flexibility to identify the drivers and corresponding impacts of different events. In this paper, we present MVST-SciVis (MultiVariate SpatioTemporal Scientific data Visualization), a new visual analytics prototype to help scientists explore spatiotemporal correlations among multiple variables, and analyze the drivers and influences of different compound events. MVST-SciVis provides coordinated maps, scatterplots, line charts and bar charts to support a three-level multi-granularity complex visual analysis pipeline. MVST-SciVis also provides a storyline visualization tailored for scientific data that abstracts inter-entity relationships and the driving components information of compound events. Our case studies with the data from two ecosystem circles of climate and agriculture illustrate the usefulness and effectiveness of MVST-SciVis. Graphical abstract</description><identifier>ISSN: 1343-8875</identifier><identifier>EISSN: 1875-8975</identifier><identifier>DOI: 10.1007/s12650-022-00893-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Charts ; Classical and Continuum Physics ; Computer Imaging ; Engineering ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Heat and Mass Transfer ; Mathematical analysis ; Multivariate analysis ; Pattern Recognition and Graphics ; Regular Paper ; Scientific visualization ; Scientists ; Vision ; Visualization</subject><ispartof>Journal of visualization, 2023-06, Vol.26 (3), p.687-703</ispartof><rights>The Visualization Society of Japan 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-3198c1065b538bb057c7f8ae37108618eb46b78139f5ed67629a7112f365d9aa3</citedby><cites>FETCH-LOGICAL-c319t-3198c1065b538bb057c7f8ae37108618eb46b78139f5ed67629a7112f365d9aa3</cites><orcidid>0000-0002-8283-2278</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12650-022-00893-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12650-022-00893-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Lu, Xuyi</creatorcontrib><creatorcontrib>Xu, Yuan</creatorcontrib><creatorcontrib>Li, Guan</creatorcontrib><creatorcontrib>Chen, Yi</creatorcontrib><creatorcontrib>Shan, Guihua</creatorcontrib><title>MVST-SciVis: narrative visualization and analysis of compound events in scientific data</title><title>Journal of visualization</title><addtitle>J Vis</addtitle><description>There is a large volume of spatiotemporally correlated multivariate data in multiple layers of the earth’s environmental system. Compound events arise from the interaction of multiple variables. Current approaches employed by earth scientists lack the flexibility to identify the drivers and corresponding impacts of different events. In this paper, we present MVST-SciVis (MultiVariate SpatioTemporal Scientific data Visualization), a new visual analytics prototype to help scientists explore spatiotemporal correlations among multiple variables, and analyze the drivers and influences of different compound events. MVST-SciVis provides coordinated maps, scatterplots, line charts and bar charts to support a three-level multi-granularity complex visual analysis pipeline. MVST-SciVis also provides a storyline visualization tailored for scientific data that abstracts inter-entity relationships and the driving components information of compound events. Our case studies with the data from two ecosystem circles of climate and agriculture illustrate the usefulness and effectiveness of MVST-SciVis. Graphical abstract</description><subject>Charts</subject><subject>Classical and Continuum Physics</subject><subject>Computer Imaging</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Heat and Mass Transfer</subject><subject>Mathematical analysis</subject><subject>Multivariate analysis</subject><subject>Pattern Recognition and Graphics</subject><subject>Regular Paper</subject><subject>Scientific visualization</subject><subject>Scientists</subject><subject>Vision</subject><subject>Visualization</subject><issn>1343-8875</issn><issn>1875-8975</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LAzEQDaJgrf4BTwHP0UnSfKw3KX5BxUNrPYZsNisp7W5Ndgv115u6gjcPM_NmeO8xPIQuKVxTAHWTKJMCCDBGAHTBCRyhEdVKEF0ocZwxn3Ci8-EUnaW0AmB0ougIvb8s5wsyd2EZ0i1ubIy2CzuPdyH1dh2-8tY22DZVLrvep5BwW2PXbrZtn49-55su4dDg5EKGoQ4OV7az5-iktuvkL37nGL093C-mT2T2-vg8vZsRx2nRkdy0oyBFKbguSxDKqVpbzxUFLan25USWSlNe1MJXUklWWEUpq7kUVWEtH6OrwXcb28_ep86s2j7mV5NhOhMFLwAyiw0sF9uUoq_NNoaNjXtDwRwCNEOAJgdofgI0BxEfRCmTmw8f_6z_UX0DLuNypQ</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Lu, Xuyi</creator><creator>Xu, Yuan</creator><creator>Li, Guan</creator><creator>Chen, Yi</creator><creator>Shan, Guihua</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8283-2278</orcidid></search><sort><creationdate>20230601</creationdate><title>MVST-SciVis: narrative visualization and analysis of compound events in scientific data</title><author>Lu, Xuyi ; Xu, Yuan ; Li, Guan ; Chen, Yi ; Shan, Guihua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-3198c1065b538bb057c7f8ae37108618eb46b78139f5ed67629a7112f365d9aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Charts</topic><topic>Classical and Continuum Physics</topic><topic>Computer Imaging</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Heat and Mass Transfer</topic><topic>Mathematical analysis</topic><topic>Multivariate analysis</topic><topic>Pattern Recognition and Graphics</topic><topic>Regular Paper</topic><topic>Scientific visualization</topic><topic>Scientists</topic><topic>Vision</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Xuyi</creatorcontrib><creatorcontrib>Xu, Yuan</creatorcontrib><creatorcontrib>Li, Guan</creatorcontrib><creatorcontrib>Chen, Yi</creatorcontrib><creatorcontrib>Shan, Guihua</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of visualization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Xuyi</au><au>Xu, Yuan</au><au>Li, Guan</au><au>Chen, Yi</au><au>Shan, Guihua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MVST-SciVis: narrative visualization and analysis of compound events in scientific data</atitle><jtitle>Journal of visualization</jtitle><stitle>J Vis</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>26</volume><issue>3</issue><spage>687</spage><epage>703</epage><pages>687-703</pages><issn>1343-8875</issn><eissn>1875-8975</eissn><abstract>There is a large volume of spatiotemporally correlated multivariate data in multiple layers of the earth’s environmental system. Compound events arise from the interaction of multiple variables. Current approaches employed by earth scientists lack the flexibility to identify the drivers and corresponding impacts of different events. In this paper, we present MVST-SciVis (MultiVariate SpatioTemporal Scientific data Visualization), a new visual analytics prototype to help scientists explore spatiotemporal correlations among multiple variables, and analyze the drivers and influences of different compound events. MVST-SciVis provides coordinated maps, scatterplots, line charts and bar charts to support a three-level multi-granularity complex visual analysis pipeline. MVST-SciVis also provides a storyline visualization tailored for scientific data that abstracts inter-entity relationships and the driving components information of compound events. Our case studies with the data from two ecosystem circles of climate and agriculture illustrate the usefulness and effectiveness of MVST-SciVis. Graphical abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12650-022-00893-0</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-8283-2278</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1343-8875
ispartof Journal of visualization, 2023-06, Vol.26 (3), p.687-703
issn 1343-8875
1875-8975
language eng
recordid cdi_proquest_journals_2811253900
source SpringerNature Journals
subjects Charts
Classical and Continuum Physics
Computer Imaging
Engineering
Engineering Fluid Dynamics
Engineering Thermodynamics
Heat and Mass Transfer
Mathematical analysis
Multivariate analysis
Pattern Recognition and Graphics
Regular Paper
Scientific visualization
Scientists
Vision
Visualization
title MVST-SciVis: narrative visualization and analysis of compound events in scientific data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T03%3A51%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MVST-SciVis:%20narrative%20visualization%20and%20analysis%20of%20compound%20events%20in%20scientific%20data&rft.jtitle=Journal%20of%20visualization&rft.au=Lu,%20Xuyi&rft.date=2023-06-01&rft.volume=26&rft.issue=3&rft.spage=687&rft.epage=703&rft.pages=687-703&rft.issn=1343-8875&rft.eissn=1875-8975&rft_id=info:doi/10.1007/s12650-022-00893-0&rft_dat=%3Cproquest_cross%3E2811253900%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2811253900&rft_id=info:pmid/&rfr_iscdi=true