Estimates for singular numbers of Hausdorff–Zhu operators and applications
We continue the study of the so‐called Hausdorff–Zhu operators. In this paper, we study the behavior of the singular values of such operators. We prove the general fact that the sequence of singular numbers tends to zero, as well as we prove power‐type estimates for such behavior under additional co...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2023-05, Vol.46 (8), p.9676-9693 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9693 |
---|---|
container_issue | 8 |
container_start_page | 9676 |
container_title | Mathematical methods in the applied sciences |
container_volume | 46 |
creator | Grudsky, Sergei Karapetyants, Alexey Mirotin, Adolf |
description | We continue the study of the so‐called Hausdorff–Zhu operators. In this paper, we study the behavior of the singular values of such operators. We prove the general fact that the sequence of singular numbers tends to zero, as well as we prove power‐type estimates for such behavior under additional conditions on the kernel of the operator. We give application of these results to the boundedness of Hausdorff–Zhu operators in general classes of analytic functions in the unit disc and also in some special classes of analytic functions defined in terms of conditions on Taylor or Fourier coefficients. |
doi_str_mv | 10.1002/mma.9080 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2811246750</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2811246750</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3270-95f0407211d07a1708e14db53ab88a26555ec00843619482f45f62b02013ce3</originalsourceid><addsrcrecordid>eNp1kL9OwzAQhy0EEqUg8QiWWFhS7hw7f8aqKi1SKwaYWCwnsSFVEgc7EerGO_CGPAkuZWW64T7d_X4fIdcIMwRgd22rZjlkcEImCHkeIU-TUzIBTCHiDPk5ufB-BwAZIpuQzdIPdasG7amxjvq6ex0b5Wg3toV2nlpD12r0lXXGfH9-vbyN1PbaqcGGpeoqqvq-qUs11Lbzl-TMqMbrq785JU_3y-fFOto8rh4W801UxizEyIUBDilDrCBVIVimkVeFiFWRZYolQghdhoA8TjDnGTNcmIQVwADjUsdTcnO82jv7Pmo_yJ0dXRceSnYoxZNUQKBuj1TprPdOG9m7UNTtJYI8mJLBlDyYCmh0RD_qRu__5eR2O__lfwB602lp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2811246750</pqid></control><display><type>article</type><title>Estimates for singular numbers of Hausdorff–Zhu operators and applications</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Grudsky, Sergei ; Karapetyants, Alexey ; Mirotin, Adolf</creator><creatorcontrib>Grudsky, Sergei ; Karapetyants, Alexey ; Mirotin, Adolf</creatorcontrib><description>We continue the study of the so‐called Hausdorff–Zhu operators. In this paper, we study the behavior of the singular values of such operators. We prove the general fact that the sequence of singular numbers tends to zero, as well as we prove power‐type estimates for such behavior under additional conditions on the kernel of the operator. We give application of these results to the boundedness of Hausdorff–Zhu operators in general classes of analytic functions in the unit disc and also in some special classes of analytic functions defined in terms of conditions on Taylor or Fourier coefficients.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.9080</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>Analytic functions ; Bergman and Hardy spaces ; Estimates ; Hausdorff operator ; Hausdorff–Zhu operator ; integral operator ; Mathematical analysis ; Operators</subject><ispartof>Mathematical methods in the applied sciences, 2023-05, Vol.46 (8), p.9676-9693</ispartof><rights>2023 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3270-95f0407211d07a1708e14db53ab88a26555ec00843619482f45f62b02013ce3</citedby><cites>FETCH-LOGICAL-c3270-95f0407211d07a1708e14db53ab88a26555ec00843619482f45f62b02013ce3</cites><orcidid>0000-0001-6205-3624 ; 0000-0002-3748-5449</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.9080$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.9080$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Grudsky, Sergei</creatorcontrib><creatorcontrib>Karapetyants, Alexey</creatorcontrib><creatorcontrib>Mirotin, Adolf</creatorcontrib><title>Estimates for singular numbers of Hausdorff–Zhu operators and applications</title><title>Mathematical methods in the applied sciences</title><description>We continue the study of the so‐called Hausdorff–Zhu operators. In this paper, we study the behavior of the singular values of such operators. We prove the general fact that the sequence of singular numbers tends to zero, as well as we prove power‐type estimates for such behavior under additional conditions on the kernel of the operator. We give application of these results to the boundedness of Hausdorff–Zhu operators in general classes of analytic functions in the unit disc and also in some special classes of analytic functions defined in terms of conditions on Taylor or Fourier coefficients.</description><subject>Analytic functions</subject><subject>Bergman and Hardy spaces</subject><subject>Estimates</subject><subject>Hausdorff operator</subject><subject>Hausdorff–Zhu operator</subject><subject>integral operator</subject><subject>Mathematical analysis</subject><subject>Operators</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kL9OwzAQhy0EEqUg8QiWWFhS7hw7f8aqKi1SKwaYWCwnsSFVEgc7EerGO_CGPAkuZWW64T7d_X4fIdcIMwRgd22rZjlkcEImCHkeIU-TUzIBTCHiDPk5ufB-BwAZIpuQzdIPdasG7amxjvq6ex0b5Wg3toV2nlpD12r0lXXGfH9-vbyN1PbaqcGGpeoqqvq-qUs11Lbzl-TMqMbrq785JU_3y-fFOto8rh4W801UxizEyIUBDilDrCBVIVimkVeFiFWRZYolQghdhoA8TjDnGTNcmIQVwADjUsdTcnO82jv7Pmo_yJ0dXRceSnYoxZNUQKBuj1TprPdOG9m7UNTtJYI8mJLBlDyYCmh0RD_qRu__5eR2O__lfwB602lp</recordid><startdate>20230530</startdate><enddate>20230530</enddate><creator>Grudsky, Sergei</creator><creator>Karapetyants, Alexey</creator><creator>Mirotin, Adolf</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0001-6205-3624</orcidid><orcidid>https://orcid.org/0000-0002-3748-5449</orcidid></search><sort><creationdate>20230530</creationdate><title>Estimates for singular numbers of Hausdorff–Zhu operators and applications</title><author>Grudsky, Sergei ; Karapetyants, Alexey ; Mirotin, Adolf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3270-95f0407211d07a1708e14db53ab88a26555ec00843619482f45f62b02013ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analytic functions</topic><topic>Bergman and Hardy spaces</topic><topic>Estimates</topic><topic>Hausdorff operator</topic><topic>Hausdorff–Zhu operator</topic><topic>integral operator</topic><topic>Mathematical analysis</topic><topic>Operators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grudsky, Sergei</creatorcontrib><creatorcontrib>Karapetyants, Alexey</creatorcontrib><creatorcontrib>Mirotin, Adolf</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grudsky, Sergei</au><au>Karapetyants, Alexey</au><au>Mirotin, Adolf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimates for singular numbers of Hausdorff–Zhu operators and applications</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2023-05-30</date><risdate>2023</risdate><volume>46</volume><issue>8</issue><spage>9676</spage><epage>9693</epage><pages>9676-9693</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>We continue the study of the so‐called Hausdorff–Zhu operators. In this paper, we study the behavior of the singular values of such operators. We prove the general fact that the sequence of singular numbers tends to zero, as well as we prove power‐type estimates for such behavior under additional conditions on the kernel of the operator. We give application of these results to the boundedness of Hausdorff–Zhu operators in general classes of analytic functions in the unit disc and also in some special classes of analytic functions defined in terms of conditions on Taylor or Fourier coefficients.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.9080</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-6205-3624</orcidid><orcidid>https://orcid.org/0000-0002-3748-5449</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0170-4214 |
ispartof | Mathematical methods in the applied sciences, 2023-05, Vol.46 (8), p.9676-9693 |
issn | 0170-4214 1099-1476 |
language | eng |
recordid | cdi_proquest_journals_2811246750 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Analytic functions Bergman and Hardy spaces Estimates Hausdorff operator Hausdorff–Zhu operator integral operator Mathematical analysis Operators |
title | Estimates for singular numbers of Hausdorff–Zhu operators and applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T16%3A44%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimates%20for%20singular%20numbers%20of%20Hausdorff%E2%80%93Zhu%20operators%20and%20applications&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Grudsky,%20Sergei&rft.date=2023-05-30&rft.volume=46&rft.issue=8&rft.spage=9676&rft.epage=9693&rft.pages=9676-9693&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.9080&rft_dat=%3Cproquest_cross%3E2811246750%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2811246750&rft_id=info:pmid/&rfr_iscdi=true |