Estimates for singular numbers of Hausdorff–Zhu operators and applications

We continue the study of the so‐called Hausdorff–Zhu operators. In this paper, we study the behavior of the singular values of such operators. We prove the general fact that the sequence of singular numbers tends to zero, as well as we prove power‐type estimates for such behavior under additional co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2023-05, Vol.46 (8), p.9676-9693
Hauptverfasser: Grudsky, Sergei, Karapetyants, Alexey, Mirotin, Adolf
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9693
container_issue 8
container_start_page 9676
container_title Mathematical methods in the applied sciences
container_volume 46
creator Grudsky, Sergei
Karapetyants, Alexey
Mirotin, Adolf
description We continue the study of the so‐called Hausdorff–Zhu operators. In this paper, we study the behavior of the singular values of such operators. We prove the general fact that the sequence of singular numbers tends to zero, as well as we prove power‐type estimates for such behavior under additional conditions on the kernel of the operator. We give application of these results to the boundedness of Hausdorff–Zhu operators in general classes of analytic functions in the unit disc and also in some special classes of analytic functions defined in terms of conditions on Taylor or Fourier coefficients.
doi_str_mv 10.1002/mma.9080
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2811246750</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2811246750</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3270-95f0407211d07a1708e14db53ab88a26555ec00843619482f45f62b02013ce3</originalsourceid><addsrcrecordid>eNp1kL9OwzAQhy0EEqUg8QiWWFhS7hw7f8aqKi1SKwaYWCwnsSFVEgc7EerGO_CGPAkuZWW64T7d_X4fIdcIMwRgd22rZjlkcEImCHkeIU-TUzIBTCHiDPk5ufB-BwAZIpuQzdIPdasG7amxjvq6ex0b5Wg3toV2nlpD12r0lXXGfH9-vbyN1PbaqcGGpeoqqvq-qUs11Lbzl-TMqMbrq785JU_3y-fFOto8rh4W801UxizEyIUBDilDrCBVIVimkVeFiFWRZYolQghdhoA8TjDnGTNcmIQVwADjUsdTcnO82jv7Pmo_yJ0dXRceSnYoxZNUQKBuj1TprPdOG9m7UNTtJYI8mJLBlDyYCmh0RD_qRu__5eR2O__lfwB602lp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2811246750</pqid></control><display><type>article</type><title>Estimates for singular numbers of Hausdorff–Zhu operators and applications</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Grudsky, Sergei ; Karapetyants, Alexey ; Mirotin, Adolf</creator><creatorcontrib>Grudsky, Sergei ; Karapetyants, Alexey ; Mirotin, Adolf</creatorcontrib><description>We continue the study of the so‐called Hausdorff–Zhu operators. In this paper, we study the behavior of the singular values of such operators. We prove the general fact that the sequence of singular numbers tends to zero, as well as we prove power‐type estimates for such behavior under additional conditions on the kernel of the operator. We give application of these results to the boundedness of Hausdorff–Zhu operators in general classes of analytic functions in the unit disc and also in some special classes of analytic functions defined in terms of conditions on Taylor or Fourier coefficients.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.9080</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>Analytic functions ; Bergman and Hardy spaces ; Estimates ; Hausdorff operator ; Hausdorff–Zhu operator ; integral operator ; Mathematical analysis ; Operators</subject><ispartof>Mathematical methods in the applied sciences, 2023-05, Vol.46 (8), p.9676-9693</ispartof><rights>2023 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3270-95f0407211d07a1708e14db53ab88a26555ec00843619482f45f62b02013ce3</citedby><cites>FETCH-LOGICAL-c3270-95f0407211d07a1708e14db53ab88a26555ec00843619482f45f62b02013ce3</cites><orcidid>0000-0001-6205-3624 ; 0000-0002-3748-5449</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.9080$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.9080$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Grudsky, Sergei</creatorcontrib><creatorcontrib>Karapetyants, Alexey</creatorcontrib><creatorcontrib>Mirotin, Adolf</creatorcontrib><title>Estimates for singular numbers of Hausdorff–Zhu operators and applications</title><title>Mathematical methods in the applied sciences</title><description>We continue the study of the so‐called Hausdorff–Zhu operators. In this paper, we study the behavior of the singular values of such operators. We prove the general fact that the sequence of singular numbers tends to zero, as well as we prove power‐type estimates for such behavior under additional conditions on the kernel of the operator. We give application of these results to the boundedness of Hausdorff–Zhu operators in general classes of analytic functions in the unit disc and also in some special classes of analytic functions defined in terms of conditions on Taylor or Fourier coefficients.</description><subject>Analytic functions</subject><subject>Bergman and Hardy spaces</subject><subject>Estimates</subject><subject>Hausdorff operator</subject><subject>Hausdorff–Zhu operator</subject><subject>integral operator</subject><subject>Mathematical analysis</subject><subject>Operators</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kL9OwzAQhy0EEqUg8QiWWFhS7hw7f8aqKi1SKwaYWCwnsSFVEgc7EerGO_CGPAkuZWW64T7d_X4fIdcIMwRgd22rZjlkcEImCHkeIU-TUzIBTCHiDPk5ufB-BwAZIpuQzdIPdasG7amxjvq6ex0b5Wg3toV2nlpD12r0lXXGfH9-vbyN1PbaqcGGpeoqqvq-qUs11Lbzl-TMqMbrq785JU_3y-fFOto8rh4W801UxizEyIUBDilDrCBVIVimkVeFiFWRZYolQghdhoA8TjDnGTNcmIQVwADjUsdTcnO82jv7Pmo_yJ0dXRceSnYoxZNUQKBuj1TprPdOG9m7UNTtJYI8mJLBlDyYCmh0RD_qRu__5eR2O__lfwB602lp</recordid><startdate>20230530</startdate><enddate>20230530</enddate><creator>Grudsky, Sergei</creator><creator>Karapetyants, Alexey</creator><creator>Mirotin, Adolf</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0001-6205-3624</orcidid><orcidid>https://orcid.org/0000-0002-3748-5449</orcidid></search><sort><creationdate>20230530</creationdate><title>Estimates for singular numbers of Hausdorff–Zhu operators and applications</title><author>Grudsky, Sergei ; Karapetyants, Alexey ; Mirotin, Adolf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3270-95f0407211d07a1708e14db53ab88a26555ec00843619482f45f62b02013ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analytic functions</topic><topic>Bergman and Hardy spaces</topic><topic>Estimates</topic><topic>Hausdorff operator</topic><topic>Hausdorff–Zhu operator</topic><topic>integral operator</topic><topic>Mathematical analysis</topic><topic>Operators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grudsky, Sergei</creatorcontrib><creatorcontrib>Karapetyants, Alexey</creatorcontrib><creatorcontrib>Mirotin, Adolf</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grudsky, Sergei</au><au>Karapetyants, Alexey</au><au>Mirotin, Adolf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimates for singular numbers of Hausdorff–Zhu operators and applications</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2023-05-30</date><risdate>2023</risdate><volume>46</volume><issue>8</issue><spage>9676</spage><epage>9693</epage><pages>9676-9693</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>We continue the study of the so‐called Hausdorff–Zhu operators. In this paper, we study the behavior of the singular values of such operators. We prove the general fact that the sequence of singular numbers tends to zero, as well as we prove power‐type estimates for such behavior under additional conditions on the kernel of the operator. We give application of these results to the boundedness of Hausdorff–Zhu operators in general classes of analytic functions in the unit disc and also in some special classes of analytic functions defined in terms of conditions on Taylor or Fourier coefficients.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.9080</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-6205-3624</orcidid><orcidid>https://orcid.org/0000-0002-3748-5449</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2023-05, Vol.46 (8), p.9676-9693
issn 0170-4214
1099-1476
language eng
recordid cdi_proquest_journals_2811246750
source Wiley Online Library Journals Frontfile Complete
subjects Analytic functions
Bergman and Hardy spaces
Estimates
Hausdorff operator
Hausdorff–Zhu operator
integral operator
Mathematical analysis
Operators
title Estimates for singular numbers of Hausdorff–Zhu operators and applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T16%3A44%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimates%20for%20singular%20numbers%20of%20Hausdorff%E2%80%93Zhu%20operators%20and%20applications&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Grudsky,%20Sergei&rft.date=2023-05-30&rft.volume=46&rft.issue=8&rft.spage=9676&rft.epage=9693&rft.pages=9676-9693&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.9080&rft_dat=%3Cproquest_cross%3E2811246750%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2811246750&rft_id=info:pmid/&rfr_iscdi=true