Outstanding visible light photocatalysis using nano-TiO2 hybrids with nitrogen-doped carbon quantum dots and/or reduced graphene oxide
Historically, titanium dioxide (TiO2) has been one of the most extensively studied metal oxide photocatalysts; however, it suffers from a large bandgap and fast charge recombination. We report the use of green, rapid, single-step continuous hydrothermal flow synthesis for the preparation of TiO2, an...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2023-05, Vol.11 (18), p.9791-9806 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9806 |
---|---|
container_issue | 18 |
container_start_page | 9791 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 11 |
creator | Ioan-Alexandru Baragau Buckeridge, John Nguyen, Kiem G Heil, Tobias Muhammad Tariq Sajjad Thomson, Stuart A J Rennie, Alistair Morgan, David J Power, Nicholas P Nicolae, Sabina Alexandra Maria-Magdalena Titirici Dunn, Steve Kellici, Suela |
description | Historically, titanium dioxide (TiO2) has been one of the most extensively studied metal oxide photocatalysts; however, it suffers from a large bandgap and fast charge recombination. We report the use of green, rapid, single-step continuous hydrothermal flow synthesis for the preparation of TiO2, and TiO2 hybrids with reduced graphene oxide (rGO) and/or N-doped carbon quantum dots (NCQDs) with significant enhancement in photocatalytic activity. Using a solar light generator under ambient conditions with no extra oxygen gas added, we observed the evolution reaction of the model pollutant (methylene blue) in real time. Tailoring of the light absorption to match that of the solar spectrum was achieved by a combination of materials of nano-TiO2 hybrids of nitrogen-doped carbon quantum dots and graphene in its reduced form with a photocatalytic rate constant of ca. 25 × 10−5 s−1. Using a diversity of state-of-the-art techniques including high-resolution transmission electron microscopy, transient photoluminescence, X-ray photoelectron spectroscopy and high accuracy, sophisticated hybrid density functional theory calculations we have gained substantial insight into the charge transfer and modulation of the energy band edges of anatase due to the presence of graphene or carbon dots, parameters which play a key role in improving drastically the photocatalytic efficiencies when compared to pristine titania. More importantly, we prove that a combination of features and materials displays the best photocatalytic behaviour. This performance is delivered in a greener synthetic process that not only produces photocatalytic materials with optimised properties and tailored visible light absorption and efficiency but also provides a path to industrialization. |
doi_str_mv | 10.1039/d2ta09586f |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2811244415</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2811244415</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-433f4e82899813946f707f7ec6c7ffcb72699b0d626131356567b461755c7b3b3</originalsourceid><addsrcrecordid>eNo9j0tLAzEAhIMoWGov_oKA57V5bR5HKb5A6KWeS7LJ7qasyTbJqv0D_m5XFOcyc_iYYQC4xugWI6rWlhSNVC15ewYWBNWoEkzx8_8s5SVY5XxAsyRCXKkF-NpOJRcdrA8dfPfZm8HBwXd9gWMfS2x00cMp-wyn_IMEHWK181sC-5NJ3mb44UsPgy8pdi5UNo7OwkYnEwM8TjqU6Q3aWDKcN9YxweTs1MxIl_TYu-Bg_PTWXYGLVg_Zrf58CV4f7nebp-pl-_i8uXupRixpqRilLXOSSKUkporxViDRCtfwRrRtYwSZTxlkOeGYYlrzmgvDOBZ13QhDDV2Cm9_eMcXj5HLZH-KUwjy5JxJjwhjDNf0Gf65lGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2811244415</pqid></control><display><type>article</type><title>Outstanding visible light photocatalysis using nano-TiO2 hybrids with nitrogen-doped carbon quantum dots and/or reduced graphene oxide</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Ioan-Alexandru Baragau ; Buckeridge, John ; Nguyen, Kiem G ; Heil, Tobias ; Muhammad Tariq Sajjad ; Thomson, Stuart A J ; Rennie, Alistair ; Morgan, David J ; Power, Nicholas P ; Nicolae, Sabina Alexandra ; Maria-Magdalena Titirici ; Dunn, Steve ; Kellici, Suela</creator><creatorcontrib>Ioan-Alexandru Baragau ; Buckeridge, John ; Nguyen, Kiem G ; Heil, Tobias ; Muhammad Tariq Sajjad ; Thomson, Stuart A J ; Rennie, Alistair ; Morgan, David J ; Power, Nicholas P ; Nicolae, Sabina Alexandra ; Maria-Magdalena Titirici ; Dunn, Steve ; Kellici, Suela</creatorcontrib><description>Historically, titanium dioxide (TiO2) has been one of the most extensively studied metal oxide photocatalysts; however, it suffers from a large bandgap and fast charge recombination. We report the use of green, rapid, single-step continuous hydrothermal flow synthesis for the preparation of TiO2, and TiO2 hybrids with reduced graphene oxide (rGO) and/or N-doped carbon quantum dots (NCQDs) with significant enhancement in photocatalytic activity. Using a solar light generator under ambient conditions with no extra oxygen gas added, we observed the evolution reaction of the model pollutant (methylene blue) in real time. Tailoring of the light absorption to match that of the solar spectrum was achieved by a combination of materials of nano-TiO2 hybrids of nitrogen-doped carbon quantum dots and graphene in its reduced form with a photocatalytic rate constant of ca. 25 × 10−5 s−1. Using a diversity of state-of-the-art techniques including high-resolution transmission electron microscopy, transient photoluminescence, X-ray photoelectron spectroscopy and high accuracy, sophisticated hybrid density functional theory calculations we have gained substantial insight into the charge transfer and modulation of the energy band edges of anatase due to the presence of graphene or carbon dots, parameters which play a key role in improving drastically the photocatalytic efficiencies when compared to pristine titania. More importantly, we prove that a combination of features and materials displays the best photocatalytic behaviour. This performance is delivered in a greener synthetic process that not only produces photocatalytic materials with optimised properties and tailored visible light absorption and efficiency but also provides a path to industrialization.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d2ta09586f</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Absorption ; Anatase ; Carbon ; Carbon dots ; Catalytic activity ; Charge transfer ; Density functional theory ; Electromagnetic absorption ; Energy bands ; Graphene ; High resolution electron microscopy ; Hybrids ; Metal oxides ; Methylene blue ; Nitrogen ; Photocatalysis ; Photoelectron spectroscopy ; Photoelectrons ; Photoluminescence ; Photons ; Quantum dots ; Recombination ; Titanium ; Titanium dioxide ; Transmission electron microscopy</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2023-05, Vol.11 (18), p.9791-9806</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Ioan-Alexandru Baragau</creatorcontrib><creatorcontrib>Buckeridge, John</creatorcontrib><creatorcontrib>Nguyen, Kiem G</creatorcontrib><creatorcontrib>Heil, Tobias</creatorcontrib><creatorcontrib>Muhammad Tariq Sajjad</creatorcontrib><creatorcontrib>Thomson, Stuart A J</creatorcontrib><creatorcontrib>Rennie, Alistair</creatorcontrib><creatorcontrib>Morgan, David J</creatorcontrib><creatorcontrib>Power, Nicholas P</creatorcontrib><creatorcontrib>Nicolae, Sabina Alexandra</creatorcontrib><creatorcontrib>Maria-Magdalena Titirici</creatorcontrib><creatorcontrib>Dunn, Steve</creatorcontrib><creatorcontrib>Kellici, Suela</creatorcontrib><title>Outstanding visible light photocatalysis using nano-TiO2 hybrids with nitrogen-doped carbon quantum dots and/or reduced graphene oxide</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Historically, titanium dioxide (TiO2) has been one of the most extensively studied metal oxide photocatalysts; however, it suffers from a large bandgap and fast charge recombination. We report the use of green, rapid, single-step continuous hydrothermal flow synthesis for the preparation of TiO2, and TiO2 hybrids with reduced graphene oxide (rGO) and/or N-doped carbon quantum dots (NCQDs) with significant enhancement in photocatalytic activity. Using a solar light generator under ambient conditions with no extra oxygen gas added, we observed the evolution reaction of the model pollutant (methylene blue) in real time. Tailoring of the light absorption to match that of the solar spectrum was achieved by a combination of materials of nano-TiO2 hybrids of nitrogen-doped carbon quantum dots and graphene in its reduced form with a photocatalytic rate constant of ca. 25 × 10−5 s−1. Using a diversity of state-of-the-art techniques including high-resolution transmission electron microscopy, transient photoluminescence, X-ray photoelectron spectroscopy and high accuracy, sophisticated hybrid density functional theory calculations we have gained substantial insight into the charge transfer and modulation of the energy band edges of anatase due to the presence of graphene or carbon dots, parameters which play a key role in improving drastically the photocatalytic efficiencies when compared to pristine titania. More importantly, we prove that a combination of features and materials displays the best photocatalytic behaviour. This performance is delivered in a greener synthetic process that not only produces photocatalytic materials with optimised properties and tailored visible light absorption and efficiency but also provides a path to industrialization.</description><subject>Absorption</subject><subject>Anatase</subject><subject>Carbon</subject><subject>Carbon dots</subject><subject>Catalytic activity</subject><subject>Charge transfer</subject><subject>Density functional theory</subject><subject>Electromagnetic absorption</subject><subject>Energy bands</subject><subject>Graphene</subject><subject>High resolution electron microscopy</subject><subject>Hybrids</subject><subject>Metal oxides</subject><subject>Methylene blue</subject><subject>Nitrogen</subject><subject>Photocatalysis</subject><subject>Photoelectron spectroscopy</subject><subject>Photoelectrons</subject><subject>Photoluminescence</subject><subject>Photons</subject><subject>Quantum dots</subject><subject>Recombination</subject><subject>Titanium</subject><subject>Titanium dioxide</subject><subject>Transmission electron microscopy</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9j0tLAzEAhIMoWGov_oKA57V5bR5HKb5A6KWeS7LJ7qasyTbJqv0D_m5XFOcyc_iYYQC4xugWI6rWlhSNVC15ewYWBNWoEkzx8_8s5SVY5XxAsyRCXKkF-NpOJRcdrA8dfPfZm8HBwXd9gWMfS2x00cMp-wyn_IMEHWK181sC-5NJ3mb44UsPgy8pdi5UNo7OwkYnEwM8TjqU6Q3aWDKcN9YxweTs1MxIl_TYu-Bg_PTWXYGLVg_Zrf58CV4f7nebp-pl-_i8uXupRixpqRilLXOSSKUkporxViDRCtfwRrRtYwSZTxlkOeGYYlrzmgvDOBZ13QhDDV2Cm9_eMcXj5HLZH-KUwjy5JxJjwhjDNf0Gf65lGA</recordid><startdate>20230509</startdate><enddate>20230509</enddate><creator>Ioan-Alexandru Baragau</creator><creator>Buckeridge, John</creator><creator>Nguyen, Kiem G</creator><creator>Heil, Tobias</creator><creator>Muhammad Tariq Sajjad</creator><creator>Thomson, Stuart A J</creator><creator>Rennie, Alistair</creator><creator>Morgan, David J</creator><creator>Power, Nicholas P</creator><creator>Nicolae, Sabina Alexandra</creator><creator>Maria-Magdalena Titirici</creator><creator>Dunn, Steve</creator><creator>Kellici, Suela</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20230509</creationdate><title>Outstanding visible light photocatalysis using nano-TiO2 hybrids with nitrogen-doped carbon quantum dots and/or reduced graphene oxide</title><author>Ioan-Alexandru Baragau ; Buckeridge, John ; Nguyen, Kiem G ; Heil, Tobias ; Muhammad Tariq Sajjad ; Thomson, Stuart A J ; Rennie, Alistair ; Morgan, David J ; Power, Nicholas P ; Nicolae, Sabina Alexandra ; Maria-Magdalena Titirici ; Dunn, Steve ; Kellici, Suela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-433f4e82899813946f707f7ec6c7ffcb72699b0d626131356567b461755c7b3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Absorption</topic><topic>Anatase</topic><topic>Carbon</topic><topic>Carbon dots</topic><topic>Catalytic activity</topic><topic>Charge transfer</topic><topic>Density functional theory</topic><topic>Electromagnetic absorption</topic><topic>Energy bands</topic><topic>Graphene</topic><topic>High resolution electron microscopy</topic><topic>Hybrids</topic><topic>Metal oxides</topic><topic>Methylene blue</topic><topic>Nitrogen</topic><topic>Photocatalysis</topic><topic>Photoelectron spectroscopy</topic><topic>Photoelectrons</topic><topic>Photoluminescence</topic><topic>Photons</topic><topic>Quantum dots</topic><topic>Recombination</topic><topic>Titanium</topic><topic>Titanium dioxide</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ioan-Alexandru Baragau</creatorcontrib><creatorcontrib>Buckeridge, John</creatorcontrib><creatorcontrib>Nguyen, Kiem G</creatorcontrib><creatorcontrib>Heil, Tobias</creatorcontrib><creatorcontrib>Muhammad Tariq Sajjad</creatorcontrib><creatorcontrib>Thomson, Stuart A J</creatorcontrib><creatorcontrib>Rennie, Alistair</creatorcontrib><creatorcontrib>Morgan, David J</creatorcontrib><creatorcontrib>Power, Nicholas P</creatorcontrib><creatorcontrib>Nicolae, Sabina Alexandra</creatorcontrib><creatorcontrib>Maria-Magdalena Titirici</creatorcontrib><creatorcontrib>Dunn, Steve</creatorcontrib><creatorcontrib>Kellici, Suela</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ioan-Alexandru Baragau</au><au>Buckeridge, John</au><au>Nguyen, Kiem G</au><au>Heil, Tobias</au><au>Muhammad Tariq Sajjad</au><au>Thomson, Stuart A J</au><au>Rennie, Alistair</au><au>Morgan, David J</au><au>Power, Nicholas P</au><au>Nicolae, Sabina Alexandra</au><au>Maria-Magdalena Titirici</au><au>Dunn, Steve</au><au>Kellici, Suela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Outstanding visible light photocatalysis using nano-TiO2 hybrids with nitrogen-doped carbon quantum dots and/or reduced graphene oxide</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2023-05-09</date><risdate>2023</risdate><volume>11</volume><issue>18</issue><spage>9791</spage><epage>9806</epage><pages>9791-9806</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Historically, titanium dioxide (TiO2) has been one of the most extensively studied metal oxide photocatalysts; however, it suffers from a large bandgap and fast charge recombination. We report the use of green, rapid, single-step continuous hydrothermal flow synthesis for the preparation of TiO2, and TiO2 hybrids with reduced graphene oxide (rGO) and/or N-doped carbon quantum dots (NCQDs) with significant enhancement in photocatalytic activity. Using a solar light generator under ambient conditions with no extra oxygen gas added, we observed the evolution reaction of the model pollutant (methylene blue) in real time. Tailoring of the light absorption to match that of the solar spectrum was achieved by a combination of materials of nano-TiO2 hybrids of nitrogen-doped carbon quantum dots and graphene in its reduced form with a photocatalytic rate constant of ca. 25 × 10−5 s−1. Using a diversity of state-of-the-art techniques including high-resolution transmission electron microscopy, transient photoluminescence, X-ray photoelectron spectroscopy and high accuracy, sophisticated hybrid density functional theory calculations we have gained substantial insight into the charge transfer and modulation of the energy band edges of anatase due to the presence of graphene or carbon dots, parameters which play a key role in improving drastically the photocatalytic efficiencies when compared to pristine titania. More importantly, we prove that a combination of features and materials displays the best photocatalytic behaviour. This performance is delivered in a greener synthetic process that not only produces photocatalytic materials with optimised properties and tailored visible light absorption and efficiency but also provides a path to industrialization.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2ta09586f</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2023-05, Vol.11 (18), p.9791-9806 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_proquest_journals_2811244415 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Absorption Anatase Carbon Carbon dots Catalytic activity Charge transfer Density functional theory Electromagnetic absorption Energy bands Graphene High resolution electron microscopy Hybrids Metal oxides Methylene blue Nitrogen Photocatalysis Photoelectron spectroscopy Photoelectrons Photoluminescence Photons Quantum dots Recombination Titanium Titanium dioxide Transmission electron microscopy |
title | Outstanding visible light photocatalysis using nano-TiO2 hybrids with nitrogen-doped carbon quantum dots and/or reduced graphene oxide |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T07%3A46%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Outstanding%20visible%20light%20photocatalysis%20using%20nano-TiO2%20hybrids%20with%20nitrogen-doped%20carbon%20quantum%20dots%20and/or%20reduced%20graphene%20oxide&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Ioan-Alexandru%20Baragau&rft.date=2023-05-09&rft.volume=11&rft.issue=18&rft.spage=9791&rft.epage=9806&rft.pages=9791-9806&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d2ta09586f&rft_dat=%3Cproquest%3E2811244415%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2811244415&rft_id=info:pmid/&rfr_iscdi=true |