Catalytic oxidation of NO to NO2 for industrial nitric acid production using Ag-promoted MnO2/ZrO2 catalysts
The Ostwald process is the most common industrial process to produce nitric acid (HNO3). It involves three main steps; ammonia oxidation in air over Pt–Rh gauze catalysts to produce nitric oxide, homogeneous gas-phase conversion of NO to NO2, and subsequent absorption of the NO2 by water to produce...
Gespeichert in:
Veröffentlicht in: | Catalysis science & technology 2023-05, Vol.13 (9), p.2783-2793 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2793 |
---|---|
container_issue | 9 |
container_start_page | 2783 |
container_title | Catalysis science & technology |
container_volume | 13 |
creator | Gopakumar, Jithin Vold, Sunniva Enger, Bjørn Christian Waller, David Vullum, Per Erik Rønning, Magnus |
description | The Ostwald process is the most common industrial process to produce nitric acid (HNO3). It involves three main steps; ammonia oxidation in air over Pt–Rh gauze catalysts to produce nitric oxide, homogeneous gas-phase conversion of NO to NO2, and subsequent absorption of the NO2 by water to produce nitric acid. Turning the homogeneous gas-phase NO oxidation reaction catalytic may lead to a significant reduction in footprint and capital expenditure. However, no industrial catalyst yet exists for this process. In this work, we focus on catalytic oxidation of NO to NO2 using silver-promoted manganese on zirconia catalysts at industrially relevant conditions (10% NO, 6% O2 and 15% H2O). Silver was found to promote the low-temperature activity of manganese catalysts in both dry and wet conditions compared to unpromoted manganese. The results demonstrate that manganese catalysts are able to work at low temperatures and concentrations relevant to industrial catalytic oxidation of NO. |
doi_str_mv | 10.1039/d2cy02178a |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2811174060</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2811174060</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-39a024b482444c7b7073cbee0f6ceb7a4ac3020d178bcbb028e7a88e8e66ca163</originalsourceid><addsrcrecordid>eNo9T01LAzEUDKJgqb34CwKe1758mKTHsvgF1b3oxUvJ15aUNambLNh_b6jiO8wMA2_mPYSuCdwSYKulo_YIlEilz9CMAucNl4Kc_-s7dokWOe-hDl8RUHSGhlYXPRxLsDh9B6dLSBGnHr92uKSKFPdpxCG6KZcx6AHHUNlibYPDhzG5yZ5WphziDq93TfU-U_EOv8SOLj_GmmBPFbnkK3TR6yH7xR_P0fvD_Vv71Gy6x-d2vWkORLHSsJUGyg1XlHNupZEgmTXeQy-sN1JzbRlQcPVTY40BqrzUSnnlhbCaCDZHN7-59Zivyeey3adpjLVySxUhRHIQwH4A29JazQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2811174060</pqid></control><display><type>article</type><title>Catalytic oxidation of NO to NO2 for industrial nitric acid production using Ag-promoted MnO2/ZrO2 catalysts</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Gopakumar, Jithin ; Vold, Sunniva ; Enger, Bjørn Christian ; Waller, David ; Vullum, Per Erik ; Rønning, Magnus</creator><creatorcontrib>Gopakumar, Jithin ; Vold, Sunniva ; Enger, Bjørn Christian ; Waller, David ; Vullum, Per Erik ; Rønning, Magnus</creatorcontrib><description>The Ostwald process is the most common industrial process to produce nitric acid (HNO3). It involves three main steps; ammonia oxidation in air over Pt–Rh gauze catalysts to produce nitric oxide, homogeneous gas-phase conversion of NO to NO2, and subsequent absorption of the NO2 by water to produce nitric acid. Turning the homogeneous gas-phase NO oxidation reaction catalytic may lead to a significant reduction in footprint and capital expenditure. However, no industrial catalyst yet exists for this process. In this work, we focus on catalytic oxidation of NO to NO2 using silver-promoted manganese on zirconia catalysts at industrially relevant conditions (10% NO, 6% O2 and 15% H2O). Silver was found to promote the low-temperature activity of manganese catalysts in both dry and wet conditions compared to unpromoted manganese. The results demonstrate that manganese catalysts are able to work at low temperatures and concentrations relevant to industrial catalytic oxidation of NO.</description><identifier>ISSN: 2044-4753</identifier><identifier>EISSN: 2044-4761</identifier><identifier>DOI: 10.1039/d2cy02178a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Ammonia ; Catalysts ; Gauze ; Low temperature ; Manganese dioxide ; Nitric acid ; Nitric oxide ; Nitrogen dioxide ; Ostwald ripening ; Oxidation ; Silver ; Zirconium dioxide</subject><ispartof>Catalysis science & technology, 2023-05, Vol.13 (9), p.2783-2793</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Gopakumar, Jithin</creatorcontrib><creatorcontrib>Vold, Sunniva</creatorcontrib><creatorcontrib>Enger, Bjørn Christian</creatorcontrib><creatorcontrib>Waller, David</creatorcontrib><creatorcontrib>Vullum, Per Erik</creatorcontrib><creatorcontrib>Rønning, Magnus</creatorcontrib><title>Catalytic oxidation of NO to NO2 for industrial nitric acid production using Ag-promoted MnO2/ZrO2 catalysts</title><title>Catalysis science & technology</title><description>The Ostwald process is the most common industrial process to produce nitric acid (HNO3). It involves three main steps; ammonia oxidation in air over Pt–Rh gauze catalysts to produce nitric oxide, homogeneous gas-phase conversion of NO to NO2, and subsequent absorption of the NO2 by water to produce nitric acid. Turning the homogeneous gas-phase NO oxidation reaction catalytic may lead to a significant reduction in footprint and capital expenditure. However, no industrial catalyst yet exists for this process. In this work, we focus on catalytic oxidation of NO to NO2 using silver-promoted manganese on zirconia catalysts at industrially relevant conditions (10% NO, 6% O2 and 15% H2O). Silver was found to promote the low-temperature activity of manganese catalysts in both dry and wet conditions compared to unpromoted manganese. The results demonstrate that manganese catalysts are able to work at low temperatures and concentrations relevant to industrial catalytic oxidation of NO.</description><subject>Ammonia</subject><subject>Catalysts</subject><subject>Gauze</subject><subject>Low temperature</subject><subject>Manganese dioxide</subject><subject>Nitric acid</subject><subject>Nitric oxide</subject><subject>Nitrogen dioxide</subject><subject>Ostwald ripening</subject><subject>Oxidation</subject><subject>Silver</subject><subject>Zirconium dioxide</subject><issn>2044-4753</issn><issn>2044-4761</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9T01LAzEUDKJgqb34CwKe1758mKTHsvgF1b3oxUvJ15aUNambLNh_b6jiO8wMA2_mPYSuCdwSYKulo_YIlEilz9CMAucNl4Kc_-s7dokWOe-hDl8RUHSGhlYXPRxLsDh9B6dLSBGnHr92uKSKFPdpxCG6KZcx6AHHUNlibYPDhzG5yZ5WphziDq93TfU-U_EOv8SOLj_GmmBPFbnkK3TR6yH7xR_P0fvD_Vv71Gy6x-d2vWkORLHSsJUGyg1XlHNupZEgmTXeQy-sN1JzbRlQcPVTY40BqrzUSnnlhbCaCDZHN7-59Zivyeey3adpjLVySxUhRHIQwH4A29JazQ</recordid><startdate>20230509</startdate><enddate>20230509</enddate><creator>Gopakumar, Jithin</creator><creator>Vold, Sunniva</creator><creator>Enger, Bjørn Christian</creator><creator>Waller, David</creator><creator>Vullum, Per Erik</creator><creator>Rønning, Magnus</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20230509</creationdate><title>Catalytic oxidation of NO to NO2 for industrial nitric acid production using Ag-promoted MnO2/ZrO2 catalysts</title><author>Gopakumar, Jithin ; Vold, Sunniva ; Enger, Bjørn Christian ; Waller, David ; Vullum, Per Erik ; Rønning, Magnus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-39a024b482444c7b7073cbee0f6ceb7a4ac3020d178bcbb028e7a88e8e66ca163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Ammonia</topic><topic>Catalysts</topic><topic>Gauze</topic><topic>Low temperature</topic><topic>Manganese dioxide</topic><topic>Nitric acid</topic><topic>Nitric oxide</topic><topic>Nitrogen dioxide</topic><topic>Ostwald ripening</topic><topic>Oxidation</topic><topic>Silver</topic><topic>Zirconium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gopakumar, Jithin</creatorcontrib><creatorcontrib>Vold, Sunniva</creatorcontrib><creatorcontrib>Enger, Bjørn Christian</creatorcontrib><creatorcontrib>Waller, David</creatorcontrib><creatorcontrib>Vullum, Per Erik</creatorcontrib><creatorcontrib>Rønning, Magnus</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Catalysis science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gopakumar, Jithin</au><au>Vold, Sunniva</au><au>Enger, Bjørn Christian</au><au>Waller, David</au><au>Vullum, Per Erik</au><au>Rønning, Magnus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Catalytic oxidation of NO to NO2 for industrial nitric acid production using Ag-promoted MnO2/ZrO2 catalysts</atitle><jtitle>Catalysis science & technology</jtitle><date>2023-05-09</date><risdate>2023</risdate><volume>13</volume><issue>9</issue><spage>2783</spage><epage>2793</epage><pages>2783-2793</pages><issn>2044-4753</issn><eissn>2044-4761</eissn><abstract>The Ostwald process is the most common industrial process to produce nitric acid (HNO3). It involves three main steps; ammonia oxidation in air over Pt–Rh gauze catalysts to produce nitric oxide, homogeneous gas-phase conversion of NO to NO2, and subsequent absorption of the NO2 by water to produce nitric acid. Turning the homogeneous gas-phase NO oxidation reaction catalytic may lead to a significant reduction in footprint and capital expenditure. However, no industrial catalyst yet exists for this process. In this work, we focus on catalytic oxidation of NO to NO2 using silver-promoted manganese on zirconia catalysts at industrially relevant conditions (10% NO, 6% O2 and 15% H2O). Silver was found to promote the low-temperature activity of manganese catalysts in both dry and wet conditions compared to unpromoted manganese. The results demonstrate that manganese catalysts are able to work at low temperatures and concentrations relevant to industrial catalytic oxidation of NO.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2cy02178a</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2044-4753 |
ispartof | Catalysis science & technology, 2023-05, Vol.13 (9), p.2783-2793 |
issn | 2044-4753 2044-4761 |
language | eng |
recordid | cdi_proquest_journals_2811174060 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Ammonia Catalysts Gauze Low temperature Manganese dioxide Nitric acid Nitric oxide Nitrogen dioxide Ostwald ripening Oxidation Silver Zirconium dioxide |
title | Catalytic oxidation of NO to NO2 for industrial nitric acid production using Ag-promoted MnO2/ZrO2 catalysts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T13%3A39%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Catalytic%20oxidation%20of%20NO%20to%20NO2%20for%20industrial%20nitric%20acid%20production%20using%20Ag-promoted%20MnO2/ZrO2%20catalysts&rft.jtitle=Catalysis%20science%20&%20technology&rft.au=Gopakumar,%20Jithin&rft.date=2023-05-09&rft.volume=13&rft.issue=9&rft.spage=2783&rft.epage=2793&rft.pages=2783-2793&rft.issn=2044-4753&rft.eissn=2044-4761&rft_id=info:doi/10.1039/d2cy02178a&rft_dat=%3Cproquest%3E2811174060%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2811174060&rft_id=info:pmid/&rfr_iscdi=true |