Transient behaviour of decelerating turbulent pipe flows
This investigation characterises the time response and the transient turbulence dynamics undergone by rapidly decelerating turbulent pipe flows. A series of direct numerical simulations of decelerating flows between two steady Reynolds numbers were conducted for this purpose. The statistical analyse...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2023-05, Vol.962, Article A44 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Journal of fluid mechanics |
container_volume | 962 |
creator | Guerrero, Byron Lambert, Martin F. Chin, Rey C. |
description | This investigation characterises the time response and the transient turbulence dynamics undergone by rapidly decelerating turbulent pipe flows. A series of direct numerical simulations of decelerating flows between two steady Reynolds numbers were conducted for this purpose. The statistical analyses reveal that rapidly decelerating turbulent flows undergo four coherent, unambiguous transitional stages: inertial (stage I), a dramatic change of sign in the viscous force associated with the decay of the viscous shear stress at the wall together with a mild turbulence decay in the viscous sublayer; friction recovery (stage II), a recovery in viscous force and progressive decay in the turbulent inertia at the near-wall region; turbulence decay (stage III), a balanced decay in both turbulent inertia and viscous force at the near-wall and overlap regions; core relaxation (stage IV), slow turbulence decay at the core region. The FIK identity derived by Fukagata, Iwamoto and Kasagi (Phys. Fluids, vol. 14, 2002, L73–L76) was used to understand further how the flow dynamics influence the time response of the skin friction coefficient ($C_f$). The results show that although $C_f$ plateaus during the fourth stage, the turbulent contribution keeps decaying, undershoots and finally recovers to attain its final steady value. The time evolution of the azimuthal vorticity ($\omega _\theta$) flux reveals that as the flow is decelerated, a layer of negative $\omega _\theta$ is produced at the wall during the flow excursion. As time progresses, this negative vorticity propagates in the wall-normal direction, attenuating the pre-existing vorticity and producing a decay in the turbulence levels. |
doi_str_mv | 10.1017/jfm.2023.294 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2811136301</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2023_294</cupid><sourcerecordid>2811136301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-e2ff01c6c1ba4996cea7983d0e49bc8d01e1b685a44b4721e2b511cda474f363</originalsourceid><addsrcrecordid>eNptkD1PwzAQhi0EEqWw8QMisZJw57hJPKKKL6kSS3bLds4lVZoEOwHx73HVSixMtzz3vncPY7cIGQKWDzu3zzjwPONSnLEFikKmZSFW52wBwHmKyOGSXYWwA8AcZLlgVe11H1rqp8TQh_5qh9kng0sastSR11Pbb5Np9mbuDszYjpS4bvgO1-zC6S7QzWkuWf38VK9f0837y9v6cZPaXMCUEncO0BYWjRZSFpZ0Kau8ARLS2KoBJDRFtdJCGFFyJG5WiLbRohQuL_IluzvGjn74nClMahcv7GOj4hUiRiS-smT3R8r6IQRPTo2-3Wv_oxDUQY2KatRBjYpqIp6dcL03vm229Jf678IvuTJlwg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2811136301</pqid></control><display><type>article</type><title>Transient behaviour of decelerating turbulent pipe flows</title><source>Cambridge University Press Journals Complete</source><creator>Guerrero, Byron ; Lambert, Martin F. ; Chin, Rey C.</creator><creatorcontrib>Guerrero, Byron ; Lambert, Martin F. ; Chin, Rey C.</creatorcontrib><description>This investigation characterises the time response and the transient turbulence dynamics undergone by rapidly decelerating turbulent pipe flows. A series of direct numerical simulations of decelerating flows between two steady Reynolds numbers were conducted for this purpose. The statistical analyses reveal that rapidly decelerating turbulent flows undergo four coherent, unambiguous transitional stages: inertial (stage I), a dramatic change of sign in the viscous force associated with the decay of the viscous shear stress at the wall together with a mild turbulence decay in the viscous sublayer; friction recovery (stage II), a recovery in viscous force and progressive decay in the turbulent inertia at the near-wall region; turbulence decay (stage III), a balanced decay in both turbulent inertia and viscous force at the near-wall and overlap regions; core relaxation (stage IV), slow turbulence decay at the core region. The FIK identity derived by Fukagata, Iwamoto and Kasagi (Phys. Fluids, vol. 14, 2002, L73–L76) was used to understand further how the flow dynamics influence the time response of the skin friction coefficient ($C_f$). The results show that although $C_f$ plateaus during the fourth stage, the turbulent contribution keeps decaying, undershoots and finally recovers to attain its final steady value. The time evolution of the azimuthal vorticity ($\omega _\theta$) flux reveals that as the flow is decelerated, a layer of negative $\omega _\theta$ is produced at the wall during the flow excursion. As time progresses, this negative vorticity propagates in the wall-normal direction, attenuating the pre-existing vorticity and producing a decay in the turbulence levels.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2023.294</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Coefficient of friction ; Datasets ; Decay ; Decay rate ; Deceleration ; Direct numerical simulation ; Dynamics ; Fluid dynamics ; Fluid flow ; Fluid mechanics ; Fluids ; Friction ; Inertia ; Investigations ; JFM Papers ; Physics ; Pipe flow ; Plateaus ; Recovery ; Reynolds number ; Shear stress ; Simulation ; Skin friction ; Statistical analysis ; Statistical methods ; Time response ; Time series ; Turbulence ; Velocity ; Viscous sublayers ; Vorticity</subject><ispartof>Journal of fluid mechanics, 2023-05, Vol.962, Article A44</ispartof><rights>The Author(s), 2023. Published by Cambridge University Press.</rights><rights>The Author(s), 2023. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-e2ff01c6c1ba4996cea7983d0e49bc8d01e1b685a44b4721e2b511cda474f363</citedby><cites>FETCH-LOGICAL-c340t-e2ff01c6c1ba4996cea7983d0e49bc8d01e1b685a44b4721e2b511cda474f363</cites><orcidid>0000-0002-2709-4321 ; 0000-0001-8272-6697 ; 0000-0001-7890-6265</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S002211202300294X/type/journal_article$$EHTML$$P50$$Gcambridge$$Hfree_for_read</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>Guerrero, Byron</creatorcontrib><creatorcontrib>Lambert, Martin F.</creatorcontrib><creatorcontrib>Chin, Rey C.</creatorcontrib><title>Transient behaviour of decelerating turbulent pipe flows</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>This investigation characterises the time response and the transient turbulence dynamics undergone by rapidly decelerating turbulent pipe flows. A series of direct numerical simulations of decelerating flows between two steady Reynolds numbers were conducted for this purpose. The statistical analyses reveal that rapidly decelerating turbulent flows undergo four coherent, unambiguous transitional stages: inertial (stage I), a dramatic change of sign in the viscous force associated with the decay of the viscous shear stress at the wall together with a mild turbulence decay in the viscous sublayer; friction recovery (stage II), a recovery in viscous force and progressive decay in the turbulent inertia at the near-wall region; turbulence decay (stage III), a balanced decay in both turbulent inertia and viscous force at the near-wall and overlap regions; core relaxation (stage IV), slow turbulence decay at the core region. The FIK identity derived by Fukagata, Iwamoto and Kasagi (Phys. Fluids, vol. 14, 2002, L73–L76) was used to understand further how the flow dynamics influence the time response of the skin friction coefficient ($C_f$). The results show that although $C_f$ plateaus during the fourth stage, the turbulent contribution keeps decaying, undershoots and finally recovers to attain its final steady value. The time evolution of the azimuthal vorticity ($\omega _\theta$) flux reveals that as the flow is decelerated, a layer of negative $\omega _\theta$ is produced at the wall during the flow excursion. As time progresses, this negative vorticity propagates in the wall-normal direction, attenuating the pre-existing vorticity and producing a decay in the turbulence levels.</description><subject>Coefficient of friction</subject><subject>Datasets</subject><subject>Decay</subject><subject>Decay rate</subject><subject>Deceleration</subject><subject>Direct numerical simulation</subject><subject>Dynamics</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Fluids</subject><subject>Friction</subject><subject>Inertia</subject><subject>Investigations</subject><subject>JFM Papers</subject><subject>Physics</subject><subject>Pipe flow</subject><subject>Plateaus</subject><subject>Recovery</subject><subject>Reynolds number</subject><subject>Shear stress</subject><subject>Simulation</subject><subject>Skin friction</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Time response</subject><subject>Time series</subject><subject>Turbulence</subject><subject>Velocity</subject><subject>Viscous sublayers</subject><subject>Vorticity</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>IKXGN</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkD1PwzAQhi0EEqWw8QMisZJw57hJPKKKL6kSS3bLds4lVZoEOwHx73HVSixMtzz3vncPY7cIGQKWDzu3zzjwPONSnLEFikKmZSFW52wBwHmKyOGSXYWwA8AcZLlgVe11H1rqp8TQh_5qh9kng0sastSR11Pbb5Np9mbuDszYjpS4bvgO1-zC6S7QzWkuWf38VK9f0837y9v6cZPaXMCUEncO0BYWjRZSFpZ0Kau8ARLS2KoBJDRFtdJCGFFyJG5WiLbRohQuL_IluzvGjn74nClMahcv7GOj4hUiRiS-smT3R8r6IQRPTo2-3Wv_oxDUQY2KatRBjYpqIp6dcL03vm229Jf678IvuTJlwg</recordid><startdate>20230509</startdate><enddate>20230509</enddate><creator>Guerrero, Byron</creator><creator>Lambert, Martin F.</creator><creator>Chin, Rey C.</creator><general>Cambridge University Press</general><scope>IKXGN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-2709-4321</orcidid><orcidid>https://orcid.org/0000-0001-8272-6697</orcidid><orcidid>https://orcid.org/0000-0001-7890-6265</orcidid></search><sort><creationdate>20230509</creationdate><title>Transient behaviour of decelerating turbulent pipe flows</title><author>Guerrero, Byron ; Lambert, Martin F. ; Chin, Rey C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-e2ff01c6c1ba4996cea7983d0e49bc8d01e1b685a44b4721e2b511cda474f363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Coefficient of friction</topic><topic>Datasets</topic><topic>Decay</topic><topic>Decay rate</topic><topic>Deceleration</topic><topic>Direct numerical simulation</topic><topic>Dynamics</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Fluids</topic><topic>Friction</topic><topic>Inertia</topic><topic>Investigations</topic><topic>JFM Papers</topic><topic>Physics</topic><topic>Pipe flow</topic><topic>Plateaus</topic><topic>Recovery</topic><topic>Reynolds number</topic><topic>Shear stress</topic><topic>Simulation</topic><topic>Skin friction</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Time response</topic><topic>Time series</topic><topic>Turbulence</topic><topic>Velocity</topic><topic>Viscous sublayers</topic><topic>Vorticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guerrero, Byron</creatorcontrib><creatorcontrib>Lambert, Martin F.</creatorcontrib><creatorcontrib>Chin, Rey C.</creatorcontrib><collection>Cambridge Journals Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guerrero, Byron</au><au>Lambert, Martin F.</au><au>Chin, Rey C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transient behaviour of decelerating turbulent pipe flows</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2023-05-09</date><risdate>2023</risdate><volume>962</volume><artnum>A44</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>This investigation characterises the time response and the transient turbulence dynamics undergone by rapidly decelerating turbulent pipe flows. A series of direct numerical simulations of decelerating flows between two steady Reynolds numbers were conducted for this purpose. The statistical analyses reveal that rapidly decelerating turbulent flows undergo four coherent, unambiguous transitional stages: inertial (stage I), a dramatic change of sign in the viscous force associated with the decay of the viscous shear stress at the wall together with a mild turbulence decay in the viscous sublayer; friction recovery (stage II), a recovery in viscous force and progressive decay in the turbulent inertia at the near-wall region; turbulence decay (stage III), a balanced decay in both turbulent inertia and viscous force at the near-wall and overlap regions; core relaxation (stage IV), slow turbulence decay at the core region. The FIK identity derived by Fukagata, Iwamoto and Kasagi (Phys. Fluids, vol. 14, 2002, L73–L76) was used to understand further how the flow dynamics influence the time response of the skin friction coefficient ($C_f$). The results show that although $C_f$ plateaus during the fourth stage, the turbulent contribution keeps decaying, undershoots and finally recovers to attain its final steady value. The time evolution of the azimuthal vorticity ($\omega _\theta$) flux reveals that as the flow is decelerated, a layer of negative $\omega _\theta$ is produced at the wall during the flow excursion. As time progresses, this negative vorticity propagates in the wall-normal direction, attenuating the pre-existing vorticity and producing a decay in the turbulence levels.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2023.294</doi><tpages>32</tpages><orcidid>https://orcid.org/0000-0002-2709-4321</orcidid><orcidid>https://orcid.org/0000-0001-8272-6697</orcidid><orcidid>https://orcid.org/0000-0001-7890-6265</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2023-05, Vol.962, Article A44 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_journals_2811136301 |
source | Cambridge University Press Journals Complete |
subjects | Coefficient of friction Datasets Decay Decay rate Deceleration Direct numerical simulation Dynamics Fluid dynamics Fluid flow Fluid mechanics Fluids Friction Inertia Investigations JFM Papers Physics Pipe flow Plateaus Recovery Reynolds number Shear stress Simulation Skin friction Statistical analysis Statistical methods Time response Time series Turbulence Velocity Viscous sublayers Vorticity |
title | Transient behaviour of decelerating turbulent pipe flows |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T09%3A56%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transient%20behaviour%20of%20decelerating%20turbulent%20pipe%20flows&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Guerrero,%20Byron&rft.date=2023-05-09&rft.volume=962&rft.artnum=A44&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2023.294&rft_dat=%3Cproquest_cross%3E2811136301%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2811136301&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2023_294&rfr_iscdi=true |