Model reduction of rotor-foundation systems using the approximate invariant manifold method

This work presents a model reduction method suited for performing nonlinear dynamic analysis of high-dimensional rotor-foundation systems modeled by the finite element method. The approach consists in combining the component mode synthesis (CMS) method with the approximate invariant manifold method...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear dynamics 2023-06, Vol.111 (12), p.10743-10768
Hauptverfasser: Mereles, Arthur, Alves, Diogo Stuani, Cavalca, Katia Lucchesi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10768
container_issue 12
container_start_page 10743
container_title Nonlinear dynamics
container_volume 111
creator Mereles, Arthur
Alves, Diogo Stuani
Cavalca, Katia Lucchesi
description This work presents a model reduction method suited for performing nonlinear dynamic analysis of high-dimensional rotor-foundation systems modeled by the finite element method. The approach consists in combining the component mode synthesis (CMS) method with the approximate invariant manifold method (AIMM), and allows the obtention of forced responses through the integration of a single pair of ordinary differential equations. The proposed approach is tested using two examples: a simple and a complex rotor-foundation system. In both cases, the nonlinearity comes from the fluid-film bearings. The results show that the method can provide a significant reduction in numerical cost while still retaining good accuracy when compared to direct time integrations. By means of the proposed method, the nonlinear dynamic analysis of high-dimensional rotor-foundation system becomes a feasible option.
doi_str_mv 10.1007/s11071-023-08421-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2811090535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2811090535</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-8007687c5e013d3cdcc91ac944d07f122ad213579b896fc58f5568cf973fb33a3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWB9_wFXAdfQmmVeWUnxBxY1CwUVI82indCY1yUj7740dwZ2rC5dzzr3nQ-iKwg0FqG8jpVBTAowTaApGye4ITWhZc8IqMT9GExCsICBgforOYlwDAGfQTNDHizd2g4M1g06t77F3OPjkA3F-6I067OI-JttFPMS2X-K0slhtt8Hv2k4li9v-S4VW9Ql3qm-d3xjc2bTy5gKdOLWJ9vJ3nqP3h_u36ROZvT4-T-9mRPOKJ9LkAlVT69IC5YZro7WgSouiMFA7ypgyjPKyFotGVE6XjSvLqtFO1NwtOFf8HF2Pufmnz8HGJNd-CH0-KVmTwQgoeZlVbFTp4GMM1sltyAXCXlKQPxDlCFFmiPIAUe6yiY-mmMX90oa_6H9c37vodr4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2811090535</pqid></control><display><type>article</type><title>Model reduction of rotor-foundation systems using the approximate invariant manifold method</title><source>SpringerLink Journals</source><creator>Mereles, Arthur ; Alves, Diogo Stuani ; Cavalca, Katia Lucchesi</creator><creatorcontrib>Mereles, Arthur ; Alves, Diogo Stuani ; Cavalca, Katia Lucchesi</creatorcontrib><description>This work presents a model reduction method suited for performing nonlinear dynamic analysis of high-dimensional rotor-foundation systems modeled by the finite element method. The approach consists in combining the component mode synthesis (CMS) method with the approximate invariant manifold method (AIMM), and allows the obtention of forced responses through the integration of a single pair of ordinary differential equations. The proposed approach is tested using two examples: a simple and a complex rotor-foundation system. In both cases, the nonlinearity comes from the fluid-film bearings. The results show that the method can provide a significant reduction in numerical cost while still retaining good accuracy when compared to direct time integrations. By means of the proposed method, the nonlinear dynamic analysis of high-dimensional rotor-foundation system becomes a feasible option.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-023-08421-x</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Classical Mechanics ; Component mode synthesis ; Control ; Differential equations ; Dimensional analysis ; Dynamical Systems ; Engineering ; Finite element analysis ; Finite element method ; Flexibility ; Invariants ; Mechanical Engineering ; Methods ; Model reduction ; Nonlinear dynamics ; Nonlinearity ; Ordinary differential equations ; Original Paper ; Partial differential equations ; Rotors ; Vibration</subject><ispartof>Nonlinear dynamics, 2023-06, Vol.111 (12), p.10743-10768</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-8007687c5e013d3cdcc91ac944d07f122ad213579b896fc58f5568cf973fb33a3</citedby><cites>FETCH-LOGICAL-c363t-8007687c5e013d3cdcc91ac944d07f122ad213579b896fc58f5568cf973fb33a3</cites><orcidid>0000-0002-1921-7934</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-023-08421-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-023-08421-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Mereles, Arthur</creatorcontrib><creatorcontrib>Alves, Diogo Stuani</creatorcontrib><creatorcontrib>Cavalca, Katia Lucchesi</creatorcontrib><title>Model reduction of rotor-foundation systems using the approximate invariant manifold method</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>This work presents a model reduction method suited for performing nonlinear dynamic analysis of high-dimensional rotor-foundation systems modeled by the finite element method. The approach consists in combining the component mode synthesis (CMS) method with the approximate invariant manifold method (AIMM), and allows the obtention of forced responses through the integration of a single pair of ordinary differential equations. The proposed approach is tested using two examples: a simple and a complex rotor-foundation system. In both cases, the nonlinearity comes from the fluid-film bearings. The results show that the method can provide a significant reduction in numerical cost while still retaining good accuracy when compared to direct time integrations. By means of the proposed method, the nonlinear dynamic analysis of high-dimensional rotor-foundation system becomes a feasible option.</description><subject>Automotive Engineering</subject><subject>Classical Mechanics</subject><subject>Component mode synthesis</subject><subject>Control</subject><subject>Differential equations</subject><subject>Dimensional analysis</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Flexibility</subject><subject>Invariants</subject><subject>Mechanical Engineering</subject><subject>Methods</subject><subject>Model reduction</subject><subject>Nonlinear dynamics</subject><subject>Nonlinearity</subject><subject>Ordinary differential equations</subject><subject>Original Paper</subject><subject>Partial differential equations</subject><subject>Rotors</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kEtLAzEUhYMoWB9_wFXAdfQmmVeWUnxBxY1CwUVI82indCY1yUj7740dwZ2rC5dzzr3nQ-iKwg0FqG8jpVBTAowTaApGye4ITWhZc8IqMT9GExCsICBgforOYlwDAGfQTNDHizd2g4M1g06t77F3OPjkA3F-6I067OI-JttFPMS2X-K0slhtt8Hv2k4li9v-S4VW9Ql3qm-d3xjc2bTy5gKdOLWJ9vJ3nqP3h_u36ROZvT4-T-9mRPOKJ9LkAlVT69IC5YZro7WgSouiMFA7ypgyjPKyFotGVE6XjSvLqtFO1NwtOFf8HF2Pufmnz8HGJNd-CH0-KVmTwQgoeZlVbFTp4GMM1sltyAXCXlKQPxDlCFFmiPIAUe6yiY-mmMX90oa_6H9c37vodr4</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Mereles, Arthur</creator><creator>Alves, Diogo Stuani</creator><creator>Cavalca, Katia Lucchesi</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-1921-7934</orcidid></search><sort><creationdate>20230601</creationdate><title>Model reduction of rotor-foundation systems using the approximate invariant manifold method</title><author>Mereles, Arthur ; Alves, Diogo Stuani ; Cavalca, Katia Lucchesi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-8007687c5e013d3cdcc91ac944d07f122ad213579b896fc58f5568cf973fb33a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Automotive Engineering</topic><topic>Classical Mechanics</topic><topic>Component mode synthesis</topic><topic>Control</topic><topic>Differential equations</topic><topic>Dimensional analysis</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Flexibility</topic><topic>Invariants</topic><topic>Mechanical Engineering</topic><topic>Methods</topic><topic>Model reduction</topic><topic>Nonlinear dynamics</topic><topic>Nonlinearity</topic><topic>Ordinary differential equations</topic><topic>Original Paper</topic><topic>Partial differential equations</topic><topic>Rotors</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mereles, Arthur</creatorcontrib><creatorcontrib>Alves, Diogo Stuani</creatorcontrib><creatorcontrib>Cavalca, Katia Lucchesi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mereles, Arthur</au><au>Alves, Diogo Stuani</au><au>Cavalca, Katia Lucchesi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model reduction of rotor-foundation systems using the approximate invariant manifold method</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>111</volume><issue>12</issue><spage>10743</spage><epage>10768</epage><pages>10743-10768</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>This work presents a model reduction method suited for performing nonlinear dynamic analysis of high-dimensional rotor-foundation systems modeled by the finite element method. The approach consists in combining the component mode synthesis (CMS) method with the approximate invariant manifold method (AIMM), and allows the obtention of forced responses through the integration of a single pair of ordinary differential equations. The proposed approach is tested using two examples: a simple and a complex rotor-foundation system. In both cases, the nonlinearity comes from the fluid-film bearings. The results show that the method can provide a significant reduction in numerical cost while still retaining good accuracy when compared to direct time integrations. By means of the proposed method, the nonlinear dynamic analysis of high-dimensional rotor-foundation system becomes a feasible option.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-023-08421-x</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0002-1921-7934</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0924-090X
ispartof Nonlinear dynamics, 2023-06, Vol.111 (12), p.10743-10768
issn 0924-090X
1573-269X
language eng
recordid cdi_proquest_journals_2811090535
source SpringerLink Journals
subjects Automotive Engineering
Classical Mechanics
Component mode synthesis
Control
Differential equations
Dimensional analysis
Dynamical Systems
Engineering
Finite element analysis
Finite element method
Flexibility
Invariants
Mechanical Engineering
Methods
Model reduction
Nonlinear dynamics
Nonlinearity
Ordinary differential equations
Original Paper
Partial differential equations
Rotors
Vibration
title Model reduction of rotor-foundation systems using the approximate invariant manifold method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T15%3A15%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model%20reduction%20of%20rotor-foundation%20systems%20using%20the%20approximate%20invariant%20manifold%20method&rft.jtitle=Nonlinear%20dynamics&rft.au=Mereles,%20Arthur&rft.date=2023-06-01&rft.volume=111&rft.issue=12&rft.spage=10743&rft.epage=10768&rft.pages=10743-10768&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-023-08421-x&rft_dat=%3Cproquest_cross%3E2811090535%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2811090535&rft_id=info:pmid/&rfr_iscdi=true