Model reduction of rotor-foundation systems using the approximate invariant manifold method
This work presents a model reduction method suited for performing nonlinear dynamic analysis of high-dimensional rotor-foundation systems modeled by the finite element method. The approach consists in combining the component mode synthesis (CMS) method with the approximate invariant manifold method...
Gespeichert in:
Veröffentlicht in: | Nonlinear dynamics 2023-06, Vol.111 (12), p.10743-10768 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10768 |
---|---|
container_issue | 12 |
container_start_page | 10743 |
container_title | Nonlinear dynamics |
container_volume | 111 |
creator | Mereles, Arthur Alves, Diogo Stuani Cavalca, Katia Lucchesi |
description | This work presents a model reduction method suited for performing nonlinear dynamic analysis of high-dimensional rotor-foundation systems modeled by the finite element method. The approach consists in combining the component mode synthesis (CMS) method with the approximate invariant manifold method (AIMM), and allows the obtention of forced responses through the integration of a single pair of ordinary differential equations. The proposed approach is tested using two examples: a simple and a complex rotor-foundation system. In both cases, the nonlinearity comes from the fluid-film bearings. The results show that the method can provide a significant reduction in numerical cost while still retaining good accuracy when compared to direct time integrations. By means of the proposed method, the nonlinear dynamic analysis of high-dimensional rotor-foundation system becomes a feasible option. |
doi_str_mv | 10.1007/s11071-023-08421-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2811090535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2811090535</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-8007687c5e013d3cdcc91ac944d07f122ad213579b896fc58f5568cf973fb33a3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWB9_wFXAdfQmmVeWUnxBxY1CwUVI82indCY1yUj7740dwZ2rC5dzzr3nQ-iKwg0FqG8jpVBTAowTaApGye4ITWhZc8IqMT9GExCsICBgforOYlwDAGfQTNDHizd2g4M1g06t77F3OPjkA3F-6I067OI-JttFPMS2X-K0slhtt8Hv2k4li9v-S4VW9Ql3qm-d3xjc2bTy5gKdOLWJ9vJ3nqP3h_u36ROZvT4-T-9mRPOKJ9LkAlVT69IC5YZro7WgSouiMFA7ypgyjPKyFotGVE6XjSvLqtFO1NwtOFf8HF2Pufmnz8HGJNd-CH0-KVmTwQgoeZlVbFTp4GMM1sltyAXCXlKQPxDlCFFmiPIAUe6yiY-mmMX90oa_6H9c37vodr4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2811090535</pqid></control><display><type>article</type><title>Model reduction of rotor-foundation systems using the approximate invariant manifold method</title><source>SpringerLink Journals</source><creator>Mereles, Arthur ; Alves, Diogo Stuani ; Cavalca, Katia Lucchesi</creator><creatorcontrib>Mereles, Arthur ; Alves, Diogo Stuani ; Cavalca, Katia Lucchesi</creatorcontrib><description>This work presents a model reduction method suited for performing nonlinear dynamic analysis of high-dimensional rotor-foundation systems modeled by the finite element method. The approach consists in combining the component mode synthesis (CMS) method with the approximate invariant manifold method (AIMM), and allows the obtention of forced responses through the integration of a single pair of ordinary differential equations. The proposed approach is tested using two examples: a simple and a complex rotor-foundation system. In both cases, the nonlinearity comes from the fluid-film bearings. The results show that the method can provide a significant reduction in numerical cost while still retaining good accuracy when compared to direct time integrations. By means of the proposed method, the nonlinear dynamic analysis of high-dimensional rotor-foundation system becomes a feasible option.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-023-08421-x</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Classical Mechanics ; Component mode synthesis ; Control ; Differential equations ; Dimensional analysis ; Dynamical Systems ; Engineering ; Finite element analysis ; Finite element method ; Flexibility ; Invariants ; Mechanical Engineering ; Methods ; Model reduction ; Nonlinear dynamics ; Nonlinearity ; Ordinary differential equations ; Original Paper ; Partial differential equations ; Rotors ; Vibration</subject><ispartof>Nonlinear dynamics, 2023-06, Vol.111 (12), p.10743-10768</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-8007687c5e013d3cdcc91ac944d07f122ad213579b896fc58f5568cf973fb33a3</citedby><cites>FETCH-LOGICAL-c363t-8007687c5e013d3cdcc91ac944d07f122ad213579b896fc58f5568cf973fb33a3</cites><orcidid>0000-0002-1921-7934</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-023-08421-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-023-08421-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Mereles, Arthur</creatorcontrib><creatorcontrib>Alves, Diogo Stuani</creatorcontrib><creatorcontrib>Cavalca, Katia Lucchesi</creatorcontrib><title>Model reduction of rotor-foundation systems using the approximate invariant manifold method</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>This work presents a model reduction method suited for performing nonlinear dynamic analysis of high-dimensional rotor-foundation systems modeled by the finite element method. The approach consists in combining the component mode synthesis (CMS) method with the approximate invariant manifold method (AIMM), and allows the obtention of forced responses through the integration of a single pair of ordinary differential equations. The proposed approach is tested using two examples: a simple and a complex rotor-foundation system. In both cases, the nonlinearity comes from the fluid-film bearings. The results show that the method can provide a significant reduction in numerical cost while still retaining good accuracy when compared to direct time integrations. By means of the proposed method, the nonlinear dynamic analysis of high-dimensional rotor-foundation system becomes a feasible option.</description><subject>Automotive Engineering</subject><subject>Classical Mechanics</subject><subject>Component mode synthesis</subject><subject>Control</subject><subject>Differential equations</subject><subject>Dimensional analysis</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Flexibility</subject><subject>Invariants</subject><subject>Mechanical Engineering</subject><subject>Methods</subject><subject>Model reduction</subject><subject>Nonlinear dynamics</subject><subject>Nonlinearity</subject><subject>Ordinary differential equations</subject><subject>Original Paper</subject><subject>Partial differential equations</subject><subject>Rotors</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kEtLAzEUhYMoWB9_wFXAdfQmmVeWUnxBxY1CwUVI82indCY1yUj7740dwZ2rC5dzzr3nQ-iKwg0FqG8jpVBTAowTaApGye4ITWhZc8IqMT9GExCsICBgforOYlwDAGfQTNDHizd2g4M1g06t77F3OPjkA3F-6I067OI-JttFPMS2X-K0slhtt8Hv2k4li9v-S4VW9Ql3qm-d3xjc2bTy5gKdOLWJ9vJ3nqP3h_u36ROZvT4-T-9mRPOKJ9LkAlVT69IC5YZro7WgSouiMFA7ypgyjPKyFotGVE6XjSvLqtFO1NwtOFf8HF2Pufmnz8HGJNd-CH0-KVmTwQgoeZlVbFTp4GMM1sltyAXCXlKQPxDlCFFmiPIAUe6yiY-mmMX90oa_6H9c37vodr4</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Mereles, Arthur</creator><creator>Alves, Diogo Stuani</creator><creator>Cavalca, Katia Lucchesi</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-1921-7934</orcidid></search><sort><creationdate>20230601</creationdate><title>Model reduction of rotor-foundation systems using the approximate invariant manifold method</title><author>Mereles, Arthur ; Alves, Diogo Stuani ; Cavalca, Katia Lucchesi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-8007687c5e013d3cdcc91ac944d07f122ad213579b896fc58f5568cf973fb33a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Automotive Engineering</topic><topic>Classical Mechanics</topic><topic>Component mode synthesis</topic><topic>Control</topic><topic>Differential equations</topic><topic>Dimensional analysis</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Flexibility</topic><topic>Invariants</topic><topic>Mechanical Engineering</topic><topic>Methods</topic><topic>Model reduction</topic><topic>Nonlinear dynamics</topic><topic>Nonlinearity</topic><topic>Ordinary differential equations</topic><topic>Original Paper</topic><topic>Partial differential equations</topic><topic>Rotors</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mereles, Arthur</creatorcontrib><creatorcontrib>Alves, Diogo Stuani</creatorcontrib><creatorcontrib>Cavalca, Katia Lucchesi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mereles, Arthur</au><au>Alves, Diogo Stuani</au><au>Cavalca, Katia Lucchesi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model reduction of rotor-foundation systems using the approximate invariant manifold method</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>111</volume><issue>12</issue><spage>10743</spage><epage>10768</epage><pages>10743-10768</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>This work presents a model reduction method suited for performing nonlinear dynamic analysis of high-dimensional rotor-foundation systems modeled by the finite element method. The approach consists in combining the component mode synthesis (CMS) method with the approximate invariant manifold method (AIMM), and allows the obtention of forced responses through the integration of a single pair of ordinary differential equations. The proposed approach is tested using two examples: a simple and a complex rotor-foundation system. In both cases, the nonlinearity comes from the fluid-film bearings. The results show that the method can provide a significant reduction in numerical cost while still retaining good accuracy when compared to direct time integrations. By means of the proposed method, the nonlinear dynamic analysis of high-dimensional rotor-foundation system becomes a feasible option.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-023-08421-x</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0002-1921-7934</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-090X |
ispartof | Nonlinear dynamics, 2023-06, Vol.111 (12), p.10743-10768 |
issn | 0924-090X 1573-269X |
language | eng |
recordid | cdi_proquest_journals_2811090535 |
source | SpringerLink Journals |
subjects | Automotive Engineering Classical Mechanics Component mode synthesis Control Differential equations Dimensional analysis Dynamical Systems Engineering Finite element analysis Finite element method Flexibility Invariants Mechanical Engineering Methods Model reduction Nonlinear dynamics Nonlinearity Ordinary differential equations Original Paper Partial differential equations Rotors Vibration |
title | Model reduction of rotor-foundation systems using the approximate invariant manifold method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T15%3A15%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model%20reduction%20of%20rotor-foundation%20systems%20using%20the%20approximate%20invariant%20manifold%20method&rft.jtitle=Nonlinear%20dynamics&rft.au=Mereles,%20Arthur&rft.date=2023-06-01&rft.volume=111&rft.issue=12&rft.spage=10743&rft.epage=10768&rft.pages=10743-10768&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-023-08421-x&rft_dat=%3Cproquest_cross%3E2811090535%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2811090535&rft_id=info:pmid/&rfr_iscdi=true |