Robust Face Morphing Attack Detection Using Fusion of Multiple Features and Classification Techniques

Face Recognition System (FRS) are shown to be vulnerable to morphed images of newborns. Detecting morphing attacks stemming from face images of newborn is important to avoid unwanted consequences, both for security and society. In this paper, we present a new reference-based/Differential Morphing At...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-05
1. Verfasser: Jag Mohan Singh Sushma Venkatesh Raghavendra Ramachandra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Jag Mohan Singh Sushma Venkatesh Raghavendra Ramachandra
description Face Recognition System (FRS) are shown to be vulnerable to morphed images of newborns. Detecting morphing attacks stemming from face images of newborn is important to avoid unwanted consequences, both for security and society. In this paper, we present a new reference-based/Differential Morphing Attack Detection (MAD) method to detect newborn morphing images using Wavelet Scattering Network (WSN). We propose a two-layer WSN with 250 \(\times\) 250 pixels and six rotations of wavelets per layer, resulting in 577 paths. The proposed approach is validated on a dataset of 852 bona fide images and 2460 morphing images constructed using face images of 42 unique newborns. The obtained results indicate a gain of over 10\% in detection accuracy over other existing D-MAD techniques.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2811068006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2811068006</sourcerecordid><originalsourceid>FETCH-proquest_journals_28110680063</originalsourceid><addsrcrecordid>eNqNi0EOgjAURBsTE4lyh5-4JilFkK1BiRs2Btek1o8USYv89v6K8QCuJm_ezIIFIkniKN8JsWIhUc85F9lepGkSMLzYmycHpVQIlZ3GTpsHHJyT6glHdKictgauNNelpxlsC5UfnB4HhBKl8xMSSHOHYpBEutVKfk81qs7ol0fasGUrB8Lwl2u2LU91cY7Gyc7eNb31k_moRuRxzLOc8yz5b_UGTEVGpQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2811068006</pqid></control><display><type>article</type><title>Robust Face Morphing Attack Detection Using Fusion of Multiple Features and Classification Techniques</title><source>Free E- Journals</source><creator>Jag Mohan Singh Sushma Venkatesh Raghavendra Ramachandra</creator><creatorcontrib>Jag Mohan Singh Sushma Venkatesh Raghavendra Ramachandra</creatorcontrib><description>Face Recognition System (FRS) are shown to be vulnerable to morphed images of newborns. Detecting morphing attacks stemming from face images of newborn is important to avoid unwanted consequences, both for security and society. In this paper, we present a new reference-based/Differential Morphing Attack Detection (MAD) method to detect newborn morphing images using Wavelet Scattering Network (WSN). We propose a two-layer WSN with 250 \(\times\) 250 pixels and six rotations of wavelets per layer, resulting in 577 paths. The proposed approach is validated on a dataset of 852 bona fide images and 2460 morphing images constructed using face images of 42 unique newborns. The obtained results indicate a gain of over 10\% in detection accuracy over other existing D-MAD techniques.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Face recognition ; Morphing ; Wireless sensor networks</subject><ispartof>arXiv.org, 2023-05</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>Jag Mohan Singh Sushma Venkatesh Raghavendra Ramachandra</creatorcontrib><title>Robust Face Morphing Attack Detection Using Fusion of Multiple Features and Classification Techniques</title><title>arXiv.org</title><description>Face Recognition System (FRS) are shown to be vulnerable to morphed images of newborns. Detecting morphing attacks stemming from face images of newborn is important to avoid unwanted consequences, both for security and society. In this paper, we present a new reference-based/Differential Morphing Attack Detection (MAD) method to detect newborn morphing images using Wavelet Scattering Network (WSN). We propose a two-layer WSN with 250 \(\times\) 250 pixels and six rotations of wavelets per layer, resulting in 577 paths. The proposed approach is validated on a dataset of 852 bona fide images and 2460 morphing images constructed using face images of 42 unique newborns. The obtained results indicate a gain of over 10\% in detection accuracy over other existing D-MAD techniques.</description><subject>Face recognition</subject><subject>Morphing</subject><subject>Wireless sensor networks</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi0EOgjAURBsTE4lyh5-4JilFkK1BiRs2Btek1o8USYv89v6K8QCuJm_ezIIFIkniKN8JsWIhUc85F9lepGkSMLzYmycHpVQIlZ3GTpsHHJyT6glHdKictgauNNelpxlsC5UfnB4HhBKl8xMSSHOHYpBEutVKfk81qs7ol0fasGUrB8Lwl2u2LU91cY7Gyc7eNb31k_moRuRxzLOc8yz5b_UGTEVGpQ</recordid><startdate>20230505</startdate><enddate>20230505</enddate><creator>Jag Mohan Singh Sushma Venkatesh Raghavendra Ramachandra</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230505</creationdate><title>Robust Face Morphing Attack Detection Using Fusion of Multiple Features and Classification Techniques</title><author>Jag Mohan Singh Sushma Venkatesh Raghavendra Ramachandra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28110680063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Face recognition</topic><topic>Morphing</topic><topic>Wireless sensor networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Jag Mohan Singh Sushma Venkatesh Raghavendra Ramachandra</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jag Mohan Singh Sushma Venkatesh Raghavendra Ramachandra</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Robust Face Morphing Attack Detection Using Fusion of Multiple Features and Classification Techniques</atitle><jtitle>arXiv.org</jtitle><date>2023-05-05</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Face Recognition System (FRS) are shown to be vulnerable to morphed images of newborns. Detecting morphing attacks stemming from face images of newborn is important to avoid unwanted consequences, both for security and society. In this paper, we present a new reference-based/Differential Morphing Attack Detection (MAD) method to detect newborn morphing images using Wavelet Scattering Network (WSN). We propose a two-layer WSN with 250 \(\times\) 250 pixels and six rotations of wavelets per layer, resulting in 577 paths. The proposed approach is validated on a dataset of 852 bona fide images and 2460 morphing images constructed using face images of 42 unique newborns. The obtained results indicate a gain of over 10\% in detection accuracy over other existing D-MAD techniques.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2811068006
source Free E- Journals
subjects Face recognition
Morphing
Wireless sensor networks
title Robust Face Morphing Attack Detection Using Fusion of Multiple Features and Classification Techniques
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T08%3A47%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Robust%20Face%20Morphing%20Attack%20Detection%20Using%20Fusion%20of%20Multiple%20Features%20and%20Classification%20Techniques&rft.jtitle=arXiv.org&rft.au=Jag%20Mohan%20Singh%20Sushma%20Venkatesh%20Raghavendra%20Ramachandra&rft.date=2023-05-05&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2811068006%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2811068006&rft_id=info:pmid/&rfr_iscdi=true