The complexity of first-order optimization methods from a metric perspective
A central tool for understanding first-order optimization algorithms is the Kurdyka-Lojasiewicz inequality. Standard approaches to such methods rely crucially on this inequality to leverage sufficient decrease conditions involving gradients or subgradients. However, the KL property fundamentally con...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-05 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Lewis, Adrian S Tian, Tonghua |
description | A central tool for understanding first-order optimization algorithms is the Kurdyka-Lojasiewicz inequality. Standard approaches to such methods rely crucially on this inequality to leverage sufficient decrease conditions involving gradients or subgradients. However, the KL property fundamentally concerns not subgradients but rather "slope", a purely metric notion. By highlighting this view, and avoiding any use of subgradients, we present a simple and concise complexity analysis for first-order optimization algorithms on metric spaces. This subgradient-free perspective also frames a short and focused proof of the KL property for nonsmooth semi-algebraic functions. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2811059916</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2811059916</sourcerecordid><originalsourceid>FETCH-proquest_journals_28110599163</originalsourceid><addsrcrecordid>eNqNiksKwjAUAIMgWLR3CLgu5GNruxbFhcvuS6kvNKXpiy-pqKdXwQO4GoaZBUuU1jIrd0qtWBrCIIRQxV7luU7Ype6Bd-j8CA8bnxwNN5ZCzJCuQBx9tM6-2mhx4g5ij9fADaHj7VfJdtwDBQ9dtHfYsKVpxwDpj2u2PR3rwznzhLcZQmwGnGn6pEaVUoq8qmSh_7veuNs-WA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2811059916</pqid></control><display><type>article</type><title>The complexity of first-order optimization methods from a metric perspective</title><source>Free E- Journals</source><creator>Lewis, Adrian S ; Tian, Tonghua</creator><creatorcontrib>Lewis, Adrian S ; Tian, Tonghua</creatorcontrib><description>A central tool for understanding first-order optimization algorithms is the Kurdyka-Lojasiewicz inequality. Standard approaches to such methods rely crucially on this inequality to leverage sufficient decrease conditions involving gradients or subgradients. However, the KL property fundamentally concerns not subgradients but rather "slope", a purely metric notion. By highlighting this view, and avoiding any use of subgradients, we present a simple and concise complexity analysis for first-order optimization algorithms on metric spaces. This subgradient-free perspective also frames a short and focused proof of the KL property for nonsmooth semi-algebraic functions.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Complexity ; Metric space ; Optimization</subject><ispartof>arXiv.org, 2023-05</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Lewis, Adrian S</creatorcontrib><creatorcontrib>Tian, Tonghua</creatorcontrib><title>The complexity of first-order optimization methods from a metric perspective</title><title>arXiv.org</title><description>A central tool for understanding first-order optimization algorithms is the Kurdyka-Lojasiewicz inequality. Standard approaches to such methods rely crucially on this inequality to leverage sufficient decrease conditions involving gradients or subgradients. However, the KL property fundamentally concerns not subgradients but rather "slope", a purely metric notion. By highlighting this view, and avoiding any use of subgradients, we present a simple and concise complexity analysis for first-order optimization algorithms on metric spaces. This subgradient-free perspective also frames a short and focused proof of the KL property for nonsmooth semi-algebraic functions.</description><subject>Algorithms</subject><subject>Complexity</subject><subject>Metric space</subject><subject>Optimization</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNiksKwjAUAIMgWLR3CLgu5GNruxbFhcvuS6kvNKXpiy-pqKdXwQO4GoaZBUuU1jIrd0qtWBrCIIRQxV7luU7Ype6Bd-j8CA8bnxwNN5ZCzJCuQBx9tM6-2mhx4g5ij9fADaHj7VfJdtwDBQ9dtHfYsKVpxwDpj2u2PR3rwznzhLcZQmwGnGn6pEaVUoq8qmSh_7veuNs-WA</recordid><startdate>20230504</startdate><enddate>20230504</enddate><creator>Lewis, Adrian S</creator><creator>Tian, Tonghua</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230504</creationdate><title>The complexity of first-order optimization methods from a metric perspective</title><author>Lewis, Adrian S ; Tian, Tonghua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28110599163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Complexity</topic><topic>Metric space</topic><topic>Optimization</topic><toplevel>online_resources</toplevel><creatorcontrib>Lewis, Adrian S</creatorcontrib><creatorcontrib>Tian, Tonghua</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lewis, Adrian S</au><au>Tian, Tonghua</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>The complexity of first-order optimization methods from a metric perspective</atitle><jtitle>arXiv.org</jtitle><date>2023-05-04</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>A central tool for understanding first-order optimization algorithms is the Kurdyka-Lojasiewicz inequality. Standard approaches to such methods rely crucially on this inequality to leverage sufficient decrease conditions involving gradients or subgradients. However, the KL property fundamentally concerns not subgradients but rather "slope", a purely metric notion. By highlighting this view, and avoiding any use of subgradients, we present a simple and concise complexity analysis for first-order optimization algorithms on metric spaces. This subgradient-free perspective also frames a short and focused proof of the KL property for nonsmooth semi-algebraic functions.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2811059916 |
source | Free E- Journals |
subjects | Algorithms Complexity Metric space Optimization |
title | The complexity of first-order optimization methods from a metric perspective |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A08%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=The%20complexity%20of%20first-order%20optimization%20methods%20from%20a%20metric%20perspective&rft.jtitle=arXiv.org&rft.au=Lewis,%20Adrian%20S&rft.date=2023-05-04&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2811059916%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2811059916&rft_id=info:pmid/&rfr_iscdi=true |