Sandwiching biregular random graphs
Let ${\mathbb{G}(n_1,n_2,m)}$ be a uniformly random m -edge subgraph of the complete bipartite graph ${K_{n_1,n_2}}$ with bipartition $(V_1, V_2)$ , where $n_i = |V_i|$ , $i=1,2$ . Given a real number $p \in [0,1]$ such that $d_1 \,{:\!=}\, pn_2$ and $d_2 \,{:\!=}\, pn_1$ are integers, let $\mathbb{...
Gespeichert in:
Veröffentlicht in: | Combinatorics, probability & computing probability & computing, 2023-01, Vol.32 (1), p.1-44 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
${\mathbb{G}(n_1,n_2,m)}$
be a uniformly random
m
-edge subgraph of the complete bipartite graph
${K_{n_1,n_2}}$
with bipartition
$(V_1, V_2)$
, where
$n_i = |V_i|$
,
$i=1,2$
. Given a real number
$p \in [0,1]$
such that
$d_1 \,{:\!=}\, pn_2$
and
$d_2 \,{:\!=}\, pn_1$
are integers, let
$\mathbb{R}(n_1,n_2,p)$
be a random subgraph of
${K_{n_1,n_2}}$
with every vertex
$v \in V_i$
of degree
$d_i$
,
$i = 1, 2$
. In this paper we determine sufficient conditions on
$n_1,n_2,p$
and
m
under which one can embed
${\mathbb{G}(n_1,n_2,m)}$
into
$\mathbb{R}(n_1,n_2,p)$
and vice versa with probability tending to 1. In particular, in the balanced case
$n_1=n_2$
, we show that if
$p\gg\log n/n$
and
$1 - p \gg \left(\log n/n \right)^{1/4}$
, then for some
$m\sim pn^2$
, asymptotically almost surely one can embed
${\mathbb{G}(n_1,n_2,m)}$
into
$\mathbb{R}(n_1,n_2,p)$
, while for
$p\gg\left(\log^{3} n/n\right)^{1/4}$
and
$1-p\gg\log n/n$
the opposite embedding holds. As an extension, we confirm the Kim–Vu Sandwich Conjecture for degrees growing faster than
$(n \log n)^{3/4}$
. |
---|---|
ISSN: | 0963-5483 1469-2163 |
DOI: | 10.1017/S0963548322000049 |