Irregular subgraphs
We suggest two related conjectures dealing with the existence of spanning irregular subgraphs of graphs. The first asserts that any $d$ -regular graph on $n$ vertices contains a spanning subgraph in which the number of vertices of each degree between $0$ and $d$ deviates from $\frac{n}{d+1}$ by at m...
Gespeichert in:
Veröffentlicht in: | Combinatorics, probability & computing probability & computing, 2023-03, Vol.32 (2), p.269-283 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We suggest two related conjectures dealing with the existence of spanning irregular subgraphs of graphs. The first asserts that any
$d$
-regular graph on
$n$
vertices contains a spanning subgraph in which the number of vertices of each degree between
$0$
and
$d$
deviates from
$\frac{n}{d+1}$
by at most
$2$
. The second is that every graph on
$n$
vertices with minimum degree
$\delta$
contains a spanning subgraph in which the number of vertices of each degree does not exceed
$\frac{n}{\delta +1}+2$
. Both conjectures remain open, but we prove several asymptotic relaxations for graphs with a large number of vertices
$n$
. In particular we show that if
$d^3 \log n \leq o(n)$
then every
$d$
-regular graph with
$n$
vertices contains a spanning subgraph in which the number of vertices of each degree between
$0$
and
$d$
is
$(1+o(1))\frac{n}{d+1}$
. We also prove that any graph with
$n$
vertices and minimum degree
$\delta$
contains a spanning subgraph in which no degree is repeated more than
$(1+o(1))\frac{n}{\delta +1}+2$
times. |
---|---|
ISSN: | 0963-5483 1469-2163 |
DOI: | 10.1017/S0963548322000220 |