Preparation of polyaniline/cellulose nanofiber composites with enhanced anticorrosion performance for waterborne epoxy resin coatings

In this work, polyaniline‐cellulose nanofiber (PANI‐CNF) nanocomposites were prepared by in‐situ polymerization of aniline on 2,2,6,6‐tetramethyl‐1‐piperidinyloxy (TEMPO) oxidized CNFs. Fourier transform infrared spectroscopy and transmission electron microscope demonstrate the successful polymeriza...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer engineering and science 2023-05, Vol.63 (5), p.1613-1622
Hauptverfasser: Zhao, Yuxiang, Huang, Minggang, Gao, Zhiwei, He, Heng, Chen, Yan, He, Feng, Lin, Yi, Yan, Bin, Chen, Sheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1622
container_issue 5
container_start_page 1613
container_title Polymer engineering and science
container_volume 63
creator Zhao, Yuxiang
Huang, Minggang
Gao, Zhiwei
He, Heng
Chen, Yan
He, Feng
Lin, Yi
Yan, Bin
Chen, Sheng
description In this work, polyaniline‐cellulose nanofiber (PANI‐CNF) nanocomposites were prepared by in‐situ polymerization of aniline on 2,2,6,6‐tetramethyl‐1‐piperidinyloxy (TEMPO) oxidized CNFs. Fourier transform infrared spectroscopy and transmission electron microscope demonstrate the successful polymerization of aniline on CNFs. The PANI‐CNF nanocomposites were added as nanofillers to waterborne epoxy resin (WER) in different proportions. The composite coatings with different contents of PANI‐CNFs were prepared by fabricating the mixture on the Q235 steel sheets. The corrosion resistance of different coatings was evaluated by potentiodynamic polarization and electrochemical impedance spectroscopy. The results confirmed that composite coatings containing 0.5% PANI‐CNF exhibit the optimum anticorrosion behaviors and best corrosion resistance, which shows the lowest corrosion current density (1.788 × 10−7 A/cm−2) and highest corrosion potential (−0.458 V). In addition, PANI‐CNF can significantly enhance the anticorrosion performance of WER coatings and maintain a high value even after 40 days of immersion in NaCl solutions. The above performances are attributed to the synergistic effect of the barrier effects and the passivation mechanism. Therefore, the bio‐based composite materials developed in this work are promising in enhancing the corrosion protection of mild steel, which is essential for the sustainable development of waterborne coatings. In this paper, polyaniline‐cellulose nanofiber (PANI‐CNF) nanocomposites were preparedand used as nanofillers of waterborne epoxy resin (WER) coatings to improve their anticorrosion properties. We found that the dispersibility of PANI‐CNF in the WER is better than that of pure PANI and the composite coatings exhibit obviously enhanced anticorrosion behaviors.
doi_str_mv 10.1002/pen.26310
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2811014395</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A751235699</galeid><sourcerecordid>A751235699</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4730-a6de04e52c37fece47138855598180606f7682fc3fff211ef52878952c6141043</originalsourceid><addsrcrecordid>eNp1kt9qFDEUxgdRcK1e-AYBrwRnN5lMZjKXpVQtFC2tXods9mQ2ZSYZkwzbfYC-d09dQRdWAvn7-76TnJyieM_oklFarSbwy6rhjL4oFkzUssRF_bJYUMqrkkspXxdvUrqnyHLRLYrHmwiTjjq74EmwZArDXns3OA8rA8MwDyEB8doH69YQiQnjFJLLkMjO5S0Bv9XewIZon50JMeIhOk0QbYjj8xHBCdnpDHEdogcCU3jYkwjJeXTDwL5Pb4tXVg8J3v0Zz4qfny9_XHwtr79_ubo4vy5N3XJa6mYDtAZRGd5aMFC3DJ8khOgkk7ShjW0bWVnDrbUVY2BFJVvZId-wmtGanxUfDr5TDL9mSFndhzl6DKkqyRhlNe_EX6rXAyjnbchRm9Elo85bwTBxTdchVZ6gevAQ9RA8WIfbR_zyBI9tAyNm7pTg45EAmQwPuddzSurq7vaY_fQPu54xuZCwS67f5nSQnLI2-F8pglVTdKOOe8Woeq4jhXWkftcRsqsDu8P77f8PqpvLbwfFE1HzyUE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2811014395</pqid></control><display><type>article</type><title>Preparation of polyaniline/cellulose nanofiber composites with enhanced anticorrosion performance for waterborne epoxy resin coatings</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhao, Yuxiang ; Huang, Minggang ; Gao, Zhiwei ; He, Heng ; Chen, Yan ; He, Feng ; Lin, Yi ; Yan, Bin ; Chen, Sheng</creator><creatorcontrib>Zhao, Yuxiang ; Huang, Minggang ; Gao, Zhiwei ; He, Heng ; Chen, Yan ; He, Feng ; Lin, Yi ; Yan, Bin ; Chen, Sheng</creatorcontrib><description>In this work, polyaniline‐cellulose nanofiber (PANI‐CNF) nanocomposites were prepared by in‐situ polymerization of aniline on 2,2,6,6‐tetramethyl‐1‐piperidinyloxy (TEMPO) oxidized CNFs. Fourier transform infrared spectroscopy and transmission electron microscope demonstrate the successful polymerization of aniline on CNFs. The PANI‐CNF nanocomposites were added as nanofillers to waterborne epoxy resin (WER) in different proportions. The composite coatings with different contents of PANI‐CNFs were prepared by fabricating the mixture on the Q235 steel sheets. The corrosion resistance of different coatings was evaluated by potentiodynamic polarization and electrochemical impedance spectroscopy. The results confirmed that composite coatings containing 0.5% PANI‐CNF exhibit the optimum anticorrosion behaviors and best corrosion resistance, which shows the lowest corrosion current density (1.788 × 10−7 A/cm−2) and highest corrosion potential (−0.458 V). In addition, PANI‐CNF can significantly enhance the anticorrosion performance of WER coatings and maintain a high value even after 40 days of immersion in NaCl solutions. The above performances are attributed to the synergistic effect of the barrier effects and the passivation mechanism. Therefore, the bio‐based composite materials developed in this work are promising in enhancing the corrosion protection of mild steel, which is essential for the sustainable development of waterborne coatings. In this paper, polyaniline‐cellulose nanofiber (PANI‐CNF) nanocomposites were preparedand used as nanofillers of waterborne epoxy resin (WER) coatings to improve their anticorrosion properties. We found that the dispersibility of PANI‐CNF in the WER is better than that of pure PANI and the composite coatings exhibit obviously enhanced anticorrosion behaviors.</description><identifier>ISSN: 0032-3888</identifier><identifier>EISSN: 1548-2634</identifier><identifier>DOI: 10.1002/pen.26310</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Aniline ; anticorrosive coating ; Cellulose ; Cellulose fibers ; cellulose nanofiber ; Cellulosic resins ; Chemical properties ; Coatings ; Composite materials ; Corrosion ; Corrosion and anti-corrosives ; Corrosion currents ; Corrosion potential ; Corrosion prevention ; Corrosion resistance ; Corrosion resistant steels ; Electrochemical impedance spectroscopy ; Epoxy resins ; Fourier transforms ; Infrared spectroscopy ; Killed steels ; Low carbon steels ; Metal sheets ; nanocomposite ; Nanocomposites ; Nanofibers ; Nanotechnology ; Observations ; polyaniline ; Polyanilines ; Polymeric composites ; Polymerization ; Production processes ; Protective coatings ; Sheet-metal ; Spectrum analysis ; Steel ; Structural steels ; Sustainable development ; Synergistic effect ; Technology application ; Transmission electron microscopes ; waterborne epoxy resin</subject><ispartof>Polymer engineering and science, 2023-05, Vol.63 (5), p.1613-1622</ispartof><rights>2023 Society of Plastics Engineers.</rights><rights>COPYRIGHT 2023 Society of Plastics Engineers, Inc.</rights><rights>2023 Society of Plastics Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4730-a6de04e52c37fece47138855598180606f7682fc3fff211ef52878952c6141043</citedby><cites>FETCH-LOGICAL-c4730-a6de04e52c37fece47138855598180606f7682fc3fff211ef52878952c6141043</cites><orcidid>0000-0001-7150-0967</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpen.26310$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpen.26310$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Zhao, Yuxiang</creatorcontrib><creatorcontrib>Huang, Minggang</creatorcontrib><creatorcontrib>Gao, Zhiwei</creatorcontrib><creatorcontrib>He, Heng</creatorcontrib><creatorcontrib>Chen, Yan</creatorcontrib><creatorcontrib>He, Feng</creatorcontrib><creatorcontrib>Lin, Yi</creatorcontrib><creatorcontrib>Yan, Bin</creatorcontrib><creatorcontrib>Chen, Sheng</creatorcontrib><title>Preparation of polyaniline/cellulose nanofiber composites with enhanced anticorrosion performance for waterborne epoxy resin coatings</title><title>Polymer engineering and science</title><description>In this work, polyaniline‐cellulose nanofiber (PANI‐CNF) nanocomposites were prepared by in‐situ polymerization of aniline on 2,2,6,6‐tetramethyl‐1‐piperidinyloxy (TEMPO) oxidized CNFs. Fourier transform infrared spectroscopy and transmission electron microscope demonstrate the successful polymerization of aniline on CNFs. The PANI‐CNF nanocomposites were added as nanofillers to waterborne epoxy resin (WER) in different proportions. The composite coatings with different contents of PANI‐CNFs were prepared by fabricating the mixture on the Q235 steel sheets. The corrosion resistance of different coatings was evaluated by potentiodynamic polarization and electrochemical impedance spectroscopy. The results confirmed that composite coatings containing 0.5% PANI‐CNF exhibit the optimum anticorrosion behaviors and best corrosion resistance, which shows the lowest corrosion current density (1.788 × 10−7 A/cm−2) and highest corrosion potential (−0.458 V). In addition, PANI‐CNF can significantly enhance the anticorrosion performance of WER coatings and maintain a high value even after 40 days of immersion in NaCl solutions. The above performances are attributed to the synergistic effect of the barrier effects and the passivation mechanism. Therefore, the bio‐based composite materials developed in this work are promising in enhancing the corrosion protection of mild steel, which is essential for the sustainable development of waterborne coatings. In this paper, polyaniline‐cellulose nanofiber (PANI‐CNF) nanocomposites were preparedand used as nanofillers of waterborne epoxy resin (WER) coatings to improve their anticorrosion properties. We found that the dispersibility of PANI‐CNF in the WER is better than that of pure PANI and the composite coatings exhibit obviously enhanced anticorrosion behaviors.</description><subject>Aniline</subject><subject>anticorrosive coating</subject><subject>Cellulose</subject><subject>Cellulose fibers</subject><subject>cellulose nanofiber</subject><subject>Cellulosic resins</subject><subject>Chemical properties</subject><subject>Coatings</subject><subject>Composite materials</subject><subject>Corrosion</subject><subject>Corrosion and anti-corrosives</subject><subject>Corrosion currents</subject><subject>Corrosion potential</subject><subject>Corrosion prevention</subject><subject>Corrosion resistance</subject><subject>Corrosion resistant steels</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Epoxy resins</subject><subject>Fourier transforms</subject><subject>Infrared spectroscopy</subject><subject>Killed steels</subject><subject>Low carbon steels</subject><subject>Metal sheets</subject><subject>nanocomposite</subject><subject>Nanocomposites</subject><subject>Nanofibers</subject><subject>Nanotechnology</subject><subject>Observations</subject><subject>polyaniline</subject><subject>Polyanilines</subject><subject>Polymeric composites</subject><subject>Polymerization</subject><subject>Production processes</subject><subject>Protective coatings</subject><subject>Sheet-metal</subject><subject>Spectrum analysis</subject><subject>Steel</subject><subject>Structural steels</subject><subject>Sustainable development</subject><subject>Synergistic effect</subject><subject>Technology application</subject><subject>Transmission electron microscopes</subject><subject>waterborne epoxy resin</subject><issn>0032-3888</issn><issn>1548-2634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><recordid>eNp1kt9qFDEUxgdRcK1e-AYBrwRnN5lMZjKXpVQtFC2tXods9mQ2ZSYZkwzbfYC-d09dQRdWAvn7-76TnJyieM_oklFarSbwy6rhjL4oFkzUssRF_bJYUMqrkkspXxdvUrqnyHLRLYrHmwiTjjq74EmwZArDXns3OA8rA8MwDyEB8doH69YQiQnjFJLLkMjO5S0Bv9XewIZon50JMeIhOk0QbYjj8xHBCdnpDHEdogcCU3jYkwjJeXTDwL5Pb4tXVg8J3v0Zz4qfny9_XHwtr79_ubo4vy5N3XJa6mYDtAZRGd5aMFC3DJ8khOgkk7ShjW0bWVnDrbUVY2BFJVvZId-wmtGanxUfDr5TDL9mSFndhzl6DKkqyRhlNe_EX6rXAyjnbchRm9Elo85bwTBxTdchVZ6gevAQ9RA8WIfbR_zyBI9tAyNm7pTg45EAmQwPuddzSurq7vaY_fQPu54xuZCwS67f5nSQnLI2-F8pglVTdKOOe8Woeq4jhXWkftcRsqsDu8P77f8PqpvLbwfFE1HzyUE</recordid><startdate>202305</startdate><enddate>202305</enddate><creator>Zhao, Yuxiang</creator><creator>Huang, Minggang</creator><creator>Gao, Zhiwei</creator><creator>He, Heng</creator><creator>Chen, Yan</creator><creator>He, Feng</creator><creator>Lin, Yi</creator><creator>Yan, Bin</creator><creator>Chen, Sheng</creator><general>John Wiley &amp; Sons, Inc</general><general>Society of Plastics Engineers, Inc</general><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>ISR</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-7150-0967</orcidid></search><sort><creationdate>202305</creationdate><title>Preparation of polyaniline/cellulose nanofiber composites with enhanced anticorrosion performance for waterborne epoxy resin coatings</title><author>Zhao, Yuxiang ; Huang, Minggang ; Gao, Zhiwei ; He, Heng ; Chen, Yan ; He, Feng ; Lin, Yi ; Yan, Bin ; Chen, Sheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4730-a6de04e52c37fece47138855598180606f7682fc3fff211ef52878952c6141043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aniline</topic><topic>anticorrosive coating</topic><topic>Cellulose</topic><topic>Cellulose fibers</topic><topic>cellulose nanofiber</topic><topic>Cellulosic resins</topic><topic>Chemical properties</topic><topic>Coatings</topic><topic>Composite materials</topic><topic>Corrosion</topic><topic>Corrosion and anti-corrosives</topic><topic>Corrosion currents</topic><topic>Corrosion potential</topic><topic>Corrosion prevention</topic><topic>Corrosion resistance</topic><topic>Corrosion resistant steels</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Epoxy resins</topic><topic>Fourier transforms</topic><topic>Infrared spectroscopy</topic><topic>Killed steels</topic><topic>Low carbon steels</topic><topic>Metal sheets</topic><topic>nanocomposite</topic><topic>Nanocomposites</topic><topic>Nanofibers</topic><topic>Nanotechnology</topic><topic>Observations</topic><topic>polyaniline</topic><topic>Polyanilines</topic><topic>Polymeric composites</topic><topic>Polymerization</topic><topic>Production processes</topic><topic>Protective coatings</topic><topic>Sheet-metal</topic><topic>Spectrum analysis</topic><topic>Steel</topic><topic>Structural steels</topic><topic>Sustainable development</topic><topic>Synergistic effect</topic><topic>Technology application</topic><topic>Transmission electron microscopes</topic><topic>waterborne epoxy resin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Yuxiang</creatorcontrib><creatorcontrib>Huang, Minggang</creatorcontrib><creatorcontrib>Gao, Zhiwei</creatorcontrib><creatorcontrib>He, Heng</creatorcontrib><creatorcontrib>Chen, Yan</creatorcontrib><creatorcontrib>He, Feng</creatorcontrib><creatorcontrib>Lin, Yi</creatorcontrib><creatorcontrib>Yan, Bin</creatorcontrib><creatorcontrib>Chen, Sheng</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>Gale In Context: Science</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymer engineering and science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Yuxiang</au><au>Huang, Minggang</au><au>Gao, Zhiwei</au><au>He, Heng</au><au>Chen, Yan</au><au>He, Feng</au><au>Lin, Yi</au><au>Yan, Bin</au><au>Chen, Sheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preparation of polyaniline/cellulose nanofiber composites with enhanced anticorrosion performance for waterborne epoxy resin coatings</atitle><jtitle>Polymer engineering and science</jtitle><date>2023-05</date><risdate>2023</risdate><volume>63</volume><issue>5</issue><spage>1613</spage><epage>1622</epage><pages>1613-1622</pages><issn>0032-3888</issn><eissn>1548-2634</eissn><abstract>In this work, polyaniline‐cellulose nanofiber (PANI‐CNF) nanocomposites were prepared by in‐situ polymerization of aniline on 2,2,6,6‐tetramethyl‐1‐piperidinyloxy (TEMPO) oxidized CNFs. Fourier transform infrared spectroscopy and transmission electron microscope demonstrate the successful polymerization of aniline on CNFs. The PANI‐CNF nanocomposites were added as nanofillers to waterborne epoxy resin (WER) in different proportions. The composite coatings with different contents of PANI‐CNFs were prepared by fabricating the mixture on the Q235 steel sheets. The corrosion resistance of different coatings was evaluated by potentiodynamic polarization and electrochemical impedance spectroscopy. The results confirmed that composite coatings containing 0.5% PANI‐CNF exhibit the optimum anticorrosion behaviors and best corrosion resistance, which shows the lowest corrosion current density (1.788 × 10−7 A/cm−2) and highest corrosion potential (−0.458 V). In addition, PANI‐CNF can significantly enhance the anticorrosion performance of WER coatings and maintain a high value even after 40 days of immersion in NaCl solutions. The above performances are attributed to the synergistic effect of the barrier effects and the passivation mechanism. Therefore, the bio‐based composite materials developed in this work are promising in enhancing the corrosion protection of mild steel, which is essential for the sustainable development of waterborne coatings. In this paper, polyaniline‐cellulose nanofiber (PANI‐CNF) nanocomposites were preparedand used as nanofillers of waterborne epoxy resin (WER) coatings to improve their anticorrosion properties. We found that the dispersibility of PANI‐CNF in the WER is better than that of pure PANI and the composite coatings exhibit obviously enhanced anticorrosion behaviors.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/pen.26310</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7150-0967</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0032-3888
ispartof Polymer engineering and science, 2023-05, Vol.63 (5), p.1613-1622
issn 0032-3888
1548-2634
language eng
recordid cdi_proquest_journals_2811014395
source Wiley Online Library Journals Frontfile Complete
subjects Aniline
anticorrosive coating
Cellulose
Cellulose fibers
cellulose nanofiber
Cellulosic resins
Chemical properties
Coatings
Composite materials
Corrosion
Corrosion and anti-corrosives
Corrosion currents
Corrosion potential
Corrosion prevention
Corrosion resistance
Corrosion resistant steels
Electrochemical impedance spectroscopy
Epoxy resins
Fourier transforms
Infrared spectroscopy
Killed steels
Low carbon steels
Metal sheets
nanocomposite
Nanocomposites
Nanofibers
Nanotechnology
Observations
polyaniline
Polyanilines
Polymeric composites
Polymerization
Production processes
Protective coatings
Sheet-metal
Spectrum analysis
Steel
Structural steels
Sustainable development
Synergistic effect
Technology application
Transmission electron microscopes
waterborne epoxy resin
title Preparation of polyaniline/cellulose nanofiber composites with enhanced anticorrosion performance for waterborne epoxy resin coatings
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T11%3A05%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preparation%20of%20polyaniline/cellulose%20nanofiber%20composites%20with%20enhanced%20anticorrosion%20performance%20for%20waterborne%20epoxy%20resin%20coatings&rft.jtitle=Polymer%20engineering%20and%20science&rft.au=Zhao,%20Yuxiang&rft.date=2023-05&rft.volume=63&rft.issue=5&rft.spage=1613&rft.epage=1622&rft.pages=1613-1622&rft.issn=0032-3888&rft.eissn=1548-2634&rft_id=info:doi/10.1002/pen.26310&rft_dat=%3Cgale_proqu%3EA751235699%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2811014395&rft_id=info:pmid/&rft_galeid=A751235699&rfr_iscdi=true