Preparation of polyaniline/cellulose nanofiber composites with enhanced anticorrosion performance for waterborne epoxy resin coatings
In this work, polyaniline‐cellulose nanofiber (PANI‐CNF) nanocomposites were prepared by in‐situ polymerization of aniline on 2,2,6,6‐tetramethyl‐1‐piperidinyloxy (TEMPO) oxidized CNFs. Fourier transform infrared spectroscopy and transmission electron microscope demonstrate the successful polymeriza...
Gespeichert in:
Veröffentlicht in: | Polymer engineering and science 2023-05, Vol.63 (5), p.1613-1622 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1622 |
---|---|
container_issue | 5 |
container_start_page | 1613 |
container_title | Polymer engineering and science |
container_volume | 63 |
creator | Zhao, Yuxiang Huang, Minggang Gao, Zhiwei He, Heng Chen, Yan He, Feng Lin, Yi Yan, Bin Chen, Sheng |
description | In this work, polyaniline‐cellulose nanofiber (PANI‐CNF) nanocomposites were prepared by in‐situ polymerization of aniline on 2,2,6,6‐tetramethyl‐1‐piperidinyloxy (TEMPO) oxidized CNFs. Fourier transform infrared spectroscopy and transmission electron microscope demonstrate the successful polymerization of aniline on CNFs. The PANI‐CNF nanocomposites were added as nanofillers to waterborne epoxy resin (WER) in different proportions. The composite coatings with different contents of PANI‐CNFs were prepared by fabricating the mixture on the Q235 steel sheets. The corrosion resistance of different coatings was evaluated by potentiodynamic polarization and electrochemical impedance spectroscopy. The results confirmed that composite coatings containing 0.5% PANI‐CNF exhibit the optimum anticorrosion behaviors and best corrosion resistance, which shows the lowest corrosion current density (1.788 × 10−7 A/cm−2) and highest corrosion potential (−0.458 V). In addition, PANI‐CNF can significantly enhance the anticorrosion performance of WER coatings and maintain a high value even after 40 days of immersion in NaCl solutions. The above performances are attributed to the synergistic effect of the barrier effects and the passivation mechanism. Therefore, the bio‐based composite materials developed in this work are promising in enhancing the corrosion protection of mild steel, which is essential for the sustainable development of waterborne coatings.
In this paper, polyaniline‐cellulose nanofiber (PANI‐CNF) nanocomposites were preparedand used as nanofillers of waterborne epoxy resin (WER) coatings to improve their anticorrosion properties. We found that the dispersibility of PANI‐CNF in the WER is better than that of pure PANI and the composite coatings exhibit obviously enhanced anticorrosion behaviors. |
doi_str_mv | 10.1002/pen.26310 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2811014395</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A751235699</galeid><sourcerecordid>A751235699</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4730-a6de04e52c37fece47138855598180606f7682fc3fff211ef52878952c6141043</originalsourceid><addsrcrecordid>eNp1kt9qFDEUxgdRcK1e-AYBrwRnN5lMZjKXpVQtFC2tXods9mQ2ZSYZkwzbfYC-d09dQRdWAvn7-76TnJyieM_oklFarSbwy6rhjL4oFkzUssRF_bJYUMqrkkspXxdvUrqnyHLRLYrHmwiTjjq74EmwZArDXns3OA8rA8MwDyEB8doH69YQiQnjFJLLkMjO5S0Bv9XewIZon50JMeIhOk0QbYjj8xHBCdnpDHEdogcCU3jYkwjJeXTDwL5Pb4tXVg8J3v0Zz4qfny9_XHwtr79_ubo4vy5N3XJa6mYDtAZRGd5aMFC3DJ8khOgkk7ShjW0bWVnDrbUVY2BFJVvZId-wmtGanxUfDr5TDL9mSFndhzl6DKkqyRhlNe_EX6rXAyjnbchRm9Elo85bwTBxTdchVZ6gevAQ9RA8WIfbR_zyBI9tAyNm7pTg45EAmQwPuddzSurq7vaY_fQPu54xuZCwS67f5nSQnLI2-F8pglVTdKOOe8Woeq4jhXWkftcRsqsDu8P77f8PqpvLbwfFE1HzyUE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2811014395</pqid></control><display><type>article</type><title>Preparation of polyaniline/cellulose nanofiber composites with enhanced anticorrosion performance for waterborne epoxy resin coatings</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhao, Yuxiang ; Huang, Minggang ; Gao, Zhiwei ; He, Heng ; Chen, Yan ; He, Feng ; Lin, Yi ; Yan, Bin ; Chen, Sheng</creator><creatorcontrib>Zhao, Yuxiang ; Huang, Minggang ; Gao, Zhiwei ; He, Heng ; Chen, Yan ; He, Feng ; Lin, Yi ; Yan, Bin ; Chen, Sheng</creatorcontrib><description>In this work, polyaniline‐cellulose nanofiber (PANI‐CNF) nanocomposites were prepared by in‐situ polymerization of aniline on 2,2,6,6‐tetramethyl‐1‐piperidinyloxy (TEMPO) oxidized CNFs. Fourier transform infrared spectroscopy and transmission electron microscope demonstrate the successful polymerization of aniline on CNFs. The PANI‐CNF nanocomposites were added as nanofillers to waterborne epoxy resin (WER) in different proportions. The composite coatings with different contents of PANI‐CNFs were prepared by fabricating the mixture on the Q235 steel sheets. The corrosion resistance of different coatings was evaluated by potentiodynamic polarization and electrochemical impedance spectroscopy. The results confirmed that composite coatings containing 0.5% PANI‐CNF exhibit the optimum anticorrosion behaviors and best corrosion resistance, which shows the lowest corrosion current density (1.788 × 10−7 A/cm−2) and highest corrosion potential (−0.458 V). In addition, PANI‐CNF can significantly enhance the anticorrosion performance of WER coatings and maintain a high value even after 40 days of immersion in NaCl solutions. The above performances are attributed to the synergistic effect of the barrier effects and the passivation mechanism. Therefore, the bio‐based composite materials developed in this work are promising in enhancing the corrosion protection of mild steel, which is essential for the sustainable development of waterborne coatings.
In this paper, polyaniline‐cellulose nanofiber (PANI‐CNF) nanocomposites were preparedand used as nanofillers of waterborne epoxy resin (WER) coatings to improve their anticorrosion properties. We found that the dispersibility of PANI‐CNF in the WER is better than that of pure PANI and the composite coatings exhibit obviously enhanced anticorrosion behaviors.</description><identifier>ISSN: 0032-3888</identifier><identifier>EISSN: 1548-2634</identifier><identifier>DOI: 10.1002/pen.26310</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Aniline ; anticorrosive coating ; Cellulose ; Cellulose fibers ; cellulose nanofiber ; Cellulosic resins ; Chemical properties ; Coatings ; Composite materials ; Corrosion ; Corrosion and anti-corrosives ; Corrosion currents ; Corrosion potential ; Corrosion prevention ; Corrosion resistance ; Corrosion resistant steels ; Electrochemical impedance spectroscopy ; Epoxy resins ; Fourier transforms ; Infrared spectroscopy ; Killed steels ; Low carbon steels ; Metal sheets ; nanocomposite ; Nanocomposites ; Nanofibers ; Nanotechnology ; Observations ; polyaniline ; Polyanilines ; Polymeric composites ; Polymerization ; Production processes ; Protective coatings ; Sheet-metal ; Spectrum analysis ; Steel ; Structural steels ; Sustainable development ; Synergistic effect ; Technology application ; Transmission electron microscopes ; waterborne epoxy resin</subject><ispartof>Polymer engineering and science, 2023-05, Vol.63 (5), p.1613-1622</ispartof><rights>2023 Society of Plastics Engineers.</rights><rights>COPYRIGHT 2023 Society of Plastics Engineers, Inc.</rights><rights>2023 Society of Plastics Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4730-a6de04e52c37fece47138855598180606f7682fc3fff211ef52878952c6141043</citedby><cites>FETCH-LOGICAL-c4730-a6de04e52c37fece47138855598180606f7682fc3fff211ef52878952c6141043</cites><orcidid>0000-0001-7150-0967</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpen.26310$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpen.26310$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Zhao, Yuxiang</creatorcontrib><creatorcontrib>Huang, Minggang</creatorcontrib><creatorcontrib>Gao, Zhiwei</creatorcontrib><creatorcontrib>He, Heng</creatorcontrib><creatorcontrib>Chen, Yan</creatorcontrib><creatorcontrib>He, Feng</creatorcontrib><creatorcontrib>Lin, Yi</creatorcontrib><creatorcontrib>Yan, Bin</creatorcontrib><creatorcontrib>Chen, Sheng</creatorcontrib><title>Preparation of polyaniline/cellulose nanofiber composites with enhanced anticorrosion performance for waterborne epoxy resin coatings</title><title>Polymer engineering and science</title><description>In this work, polyaniline‐cellulose nanofiber (PANI‐CNF) nanocomposites were prepared by in‐situ polymerization of aniline on 2,2,6,6‐tetramethyl‐1‐piperidinyloxy (TEMPO) oxidized CNFs. Fourier transform infrared spectroscopy and transmission electron microscope demonstrate the successful polymerization of aniline on CNFs. The PANI‐CNF nanocomposites were added as nanofillers to waterborne epoxy resin (WER) in different proportions. The composite coatings with different contents of PANI‐CNFs were prepared by fabricating the mixture on the Q235 steel sheets. The corrosion resistance of different coatings was evaluated by potentiodynamic polarization and electrochemical impedance spectroscopy. The results confirmed that composite coatings containing 0.5% PANI‐CNF exhibit the optimum anticorrosion behaviors and best corrosion resistance, which shows the lowest corrosion current density (1.788 × 10−7 A/cm−2) and highest corrosion potential (−0.458 V). In addition, PANI‐CNF can significantly enhance the anticorrosion performance of WER coatings and maintain a high value even after 40 days of immersion in NaCl solutions. The above performances are attributed to the synergistic effect of the barrier effects and the passivation mechanism. Therefore, the bio‐based composite materials developed in this work are promising in enhancing the corrosion protection of mild steel, which is essential for the sustainable development of waterborne coatings.
In this paper, polyaniline‐cellulose nanofiber (PANI‐CNF) nanocomposites were preparedand used as nanofillers of waterborne epoxy resin (WER) coatings to improve their anticorrosion properties. We found that the dispersibility of PANI‐CNF in the WER is better than that of pure PANI and the composite coatings exhibit obviously enhanced anticorrosion behaviors.</description><subject>Aniline</subject><subject>anticorrosive coating</subject><subject>Cellulose</subject><subject>Cellulose fibers</subject><subject>cellulose nanofiber</subject><subject>Cellulosic resins</subject><subject>Chemical properties</subject><subject>Coatings</subject><subject>Composite materials</subject><subject>Corrosion</subject><subject>Corrosion and anti-corrosives</subject><subject>Corrosion currents</subject><subject>Corrosion potential</subject><subject>Corrosion prevention</subject><subject>Corrosion resistance</subject><subject>Corrosion resistant steels</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Epoxy resins</subject><subject>Fourier transforms</subject><subject>Infrared spectroscopy</subject><subject>Killed steels</subject><subject>Low carbon steels</subject><subject>Metal sheets</subject><subject>nanocomposite</subject><subject>Nanocomposites</subject><subject>Nanofibers</subject><subject>Nanotechnology</subject><subject>Observations</subject><subject>polyaniline</subject><subject>Polyanilines</subject><subject>Polymeric composites</subject><subject>Polymerization</subject><subject>Production processes</subject><subject>Protective coatings</subject><subject>Sheet-metal</subject><subject>Spectrum analysis</subject><subject>Steel</subject><subject>Structural steels</subject><subject>Sustainable development</subject><subject>Synergistic effect</subject><subject>Technology application</subject><subject>Transmission electron microscopes</subject><subject>waterborne epoxy resin</subject><issn>0032-3888</issn><issn>1548-2634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><recordid>eNp1kt9qFDEUxgdRcK1e-AYBrwRnN5lMZjKXpVQtFC2tXods9mQ2ZSYZkwzbfYC-d09dQRdWAvn7-76TnJyieM_oklFarSbwy6rhjL4oFkzUssRF_bJYUMqrkkspXxdvUrqnyHLRLYrHmwiTjjq74EmwZArDXns3OA8rA8MwDyEB8doH69YQiQnjFJLLkMjO5S0Bv9XewIZon50JMeIhOk0QbYjj8xHBCdnpDHEdogcCU3jYkwjJeXTDwL5Pb4tXVg8J3v0Zz4qfny9_XHwtr79_ubo4vy5N3XJa6mYDtAZRGd5aMFC3DJ8khOgkk7ShjW0bWVnDrbUVY2BFJVvZId-wmtGanxUfDr5TDL9mSFndhzl6DKkqyRhlNe_EX6rXAyjnbchRm9Elo85bwTBxTdchVZ6gevAQ9RA8WIfbR_zyBI9tAyNm7pTg45EAmQwPuddzSurq7vaY_fQPu54xuZCwS67f5nSQnLI2-F8pglVTdKOOe8Woeq4jhXWkftcRsqsDu8P77f8PqpvLbwfFE1HzyUE</recordid><startdate>202305</startdate><enddate>202305</enddate><creator>Zhao, Yuxiang</creator><creator>Huang, Minggang</creator><creator>Gao, Zhiwei</creator><creator>He, Heng</creator><creator>Chen, Yan</creator><creator>He, Feng</creator><creator>Lin, Yi</creator><creator>Yan, Bin</creator><creator>Chen, Sheng</creator><general>John Wiley & Sons, Inc</general><general>Society of Plastics Engineers, Inc</general><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>ISR</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-7150-0967</orcidid></search><sort><creationdate>202305</creationdate><title>Preparation of polyaniline/cellulose nanofiber composites with enhanced anticorrosion performance for waterborne epoxy resin coatings</title><author>Zhao, Yuxiang ; Huang, Minggang ; Gao, Zhiwei ; He, Heng ; Chen, Yan ; He, Feng ; Lin, Yi ; Yan, Bin ; Chen, Sheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4730-a6de04e52c37fece47138855598180606f7682fc3fff211ef52878952c6141043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aniline</topic><topic>anticorrosive coating</topic><topic>Cellulose</topic><topic>Cellulose fibers</topic><topic>cellulose nanofiber</topic><topic>Cellulosic resins</topic><topic>Chemical properties</topic><topic>Coatings</topic><topic>Composite materials</topic><topic>Corrosion</topic><topic>Corrosion and anti-corrosives</topic><topic>Corrosion currents</topic><topic>Corrosion potential</topic><topic>Corrosion prevention</topic><topic>Corrosion resistance</topic><topic>Corrosion resistant steels</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Epoxy resins</topic><topic>Fourier transforms</topic><topic>Infrared spectroscopy</topic><topic>Killed steels</topic><topic>Low carbon steels</topic><topic>Metal sheets</topic><topic>nanocomposite</topic><topic>Nanocomposites</topic><topic>Nanofibers</topic><topic>Nanotechnology</topic><topic>Observations</topic><topic>polyaniline</topic><topic>Polyanilines</topic><topic>Polymeric composites</topic><topic>Polymerization</topic><topic>Production processes</topic><topic>Protective coatings</topic><topic>Sheet-metal</topic><topic>Spectrum analysis</topic><topic>Steel</topic><topic>Structural steels</topic><topic>Sustainable development</topic><topic>Synergistic effect</topic><topic>Technology application</topic><topic>Transmission electron microscopes</topic><topic>waterborne epoxy resin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Yuxiang</creatorcontrib><creatorcontrib>Huang, Minggang</creatorcontrib><creatorcontrib>Gao, Zhiwei</creatorcontrib><creatorcontrib>He, Heng</creatorcontrib><creatorcontrib>Chen, Yan</creatorcontrib><creatorcontrib>He, Feng</creatorcontrib><creatorcontrib>Lin, Yi</creatorcontrib><creatorcontrib>Yan, Bin</creatorcontrib><creatorcontrib>Chen, Sheng</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>Gale In Context: Science</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymer engineering and science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Yuxiang</au><au>Huang, Minggang</au><au>Gao, Zhiwei</au><au>He, Heng</au><au>Chen, Yan</au><au>He, Feng</au><au>Lin, Yi</au><au>Yan, Bin</au><au>Chen, Sheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preparation of polyaniline/cellulose nanofiber composites with enhanced anticorrosion performance for waterborne epoxy resin coatings</atitle><jtitle>Polymer engineering and science</jtitle><date>2023-05</date><risdate>2023</risdate><volume>63</volume><issue>5</issue><spage>1613</spage><epage>1622</epage><pages>1613-1622</pages><issn>0032-3888</issn><eissn>1548-2634</eissn><abstract>In this work, polyaniline‐cellulose nanofiber (PANI‐CNF) nanocomposites were prepared by in‐situ polymerization of aniline on 2,2,6,6‐tetramethyl‐1‐piperidinyloxy (TEMPO) oxidized CNFs. Fourier transform infrared spectroscopy and transmission electron microscope demonstrate the successful polymerization of aniline on CNFs. The PANI‐CNF nanocomposites were added as nanofillers to waterborne epoxy resin (WER) in different proportions. The composite coatings with different contents of PANI‐CNFs were prepared by fabricating the mixture on the Q235 steel sheets. The corrosion resistance of different coatings was evaluated by potentiodynamic polarization and electrochemical impedance spectroscopy. The results confirmed that composite coatings containing 0.5% PANI‐CNF exhibit the optimum anticorrosion behaviors and best corrosion resistance, which shows the lowest corrosion current density (1.788 × 10−7 A/cm−2) and highest corrosion potential (−0.458 V). In addition, PANI‐CNF can significantly enhance the anticorrosion performance of WER coatings and maintain a high value even after 40 days of immersion in NaCl solutions. The above performances are attributed to the synergistic effect of the barrier effects and the passivation mechanism. Therefore, the bio‐based composite materials developed in this work are promising in enhancing the corrosion protection of mild steel, which is essential for the sustainable development of waterborne coatings.
In this paper, polyaniline‐cellulose nanofiber (PANI‐CNF) nanocomposites were preparedand used as nanofillers of waterborne epoxy resin (WER) coatings to improve their anticorrosion properties. We found that the dispersibility of PANI‐CNF in the WER is better than that of pure PANI and the composite coatings exhibit obviously enhanced anticorrosion behaviors.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/pen.26310</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7150-0967</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-3888 |
ispartof | Polymer engineering and science, 2023-05, Vol.63 (5), p.1613-1622 |
issn | 0032-3888 1548-2634 |
language | eng |
recordid | cdi_proquest_journals_2811014395 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Aniline anticorrosive coating Cellulose Cellulose fibers cellulose nanofiber Cellulosic resins Chemical properties Coatings Composite materials Corrosion Corrosion and anti-corrosives Corrosion currents Corrosion potential Corrosion prevention Corrosion resistance Corrosion resistant steels Electrochemical impedance spectroscopy Epoxy resins Fourier transforms Infrared spectroscopy Killed steels Low carbon steels Metal sheets nanocomposite Nanocomposites Nanofibers Nanotechnology Observations polyaniline Polyanilines Polymeric composites Polymerization Production processes Protective coatings Sheet-metal Spectrum analysis Steel Structural steels Sustainable development Synergistic effect Technology application Transmission electron microscopes waterborne epoxy resin |
title | Preparation of polyaniline/cellulose nanofiber composites with enhanced anticorrosion performance for waterborne epoxy resin coatings |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T11%3A05%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preparation%20of%20polyaniline/cellulose%20nanofiber%20composites%20with%20enhanced%20anticorrosion%20performance%20for%20waterborne%20epoxy%20resin%20coatings&rft.jtitle=Polymer%20engineering%20and%20science&rft.au=Zhao,%20Yuxiang&rft.date=2023-05&rft.volume=63&rft.issue=5&rft.spage=1613&rft.epage=1622&rft.pages=1613-1622&rft.issn=0032-3888&rft.eissn=1548-2634&rft_id=info:doi/10.1002/pen.26310&rft_dat=%3Cgale_proqu%3EA751235699%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2811014395&rft_id=info:pmid/&rft_galeid=A751235699&rfr_iscdi=true |