Energy Bandgap of Cd1−xZnxTe, Cd1−xZnxSe and Cd1−xZnxS Semiconductors: A First-Principles Analysis Based on Tran–Blaha–Modified Becke–Johnson Exchange Potential

This paper presents a first-principles investigation of the energy bandgaps of Cd 1− x Zn x Te, Cd 1− x Zn x Se and Cd 1− x Zn x S semiconductor alloys in zinc-blende crystals. The theoretical analysis is based on the full-potential linearized augmented plane wave method within both generalized grad...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electronic materials 2023-06, Vol.52 (6), p.4191-4201
Hauptverfasser: Mimouni, K., Mokdad, N., Beladjal, K., Kadri, A., Zitouni, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4201
container_issue 6
container_start_page 4191
container_title Journal of electronic materials
container_volume 52
creator Mimouni, K.
Mokdad, N.
Beladjal, K.
Kadri, A.
Zitouni, K.
description This paper presents a first-principles investigation of the energy bandgaps of Cd 1− x Zn x Te, Cd 1− x Zn x Se and Cd 1− x Zn x S semiconductor alloys in zinc-blende crystals. The theoretical analysis is based on the full-potential linearized augmented plane wave method within both generalized gradient and local density approximations. Tran–Blaha-modified Becke–Johnson exchange potential was invoked to accurately provide bandgaps and their bowing parameters. A moderate nonlinear dependence with average bowing parameters around b  ~ 0.49 eV for Cd 1− x Zn x Te, b  ~ 0.68 eV Cd 1− x Zn x S, and b  ~ 0.63 eV for Cd 1− x Zn x Se was found. The origin of the nonlinearity is discussed in light of Zunger’s approach to conclude that it arises mainly from volume deformation.
doi_str_mv 10.1007/s11664-023-10357-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2810732770</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2810732770</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-b0dd190129db3647c7a11408f85a0dde7ef66255a5d57d5c6645eb95643edbb93</originalsourceid><addsrcrecordid>eNp9kcFOGzEQhq2qlZrSvkBPlrh2wWOv17vckijQViCQSCXUi-W1vYnpYgd7IyW3HjmX1-CpeJIaglROPY1m5vtnNPMj9BnIARAiDhNAVZUFoawAwrgo6Bs0Al7mtK6u3qIRYRUUnDL-Hn1I6ZoQ4FDDCD3MvI2LLZ4obxZqhUOHpwYe7_5sfvrN3H55lV1anKHXBXxpb5wO3qz1EGI6wmN87GIaiovovHar3iY89qrfJpfyhmQNDh7Po_KPv-8nvVqqHM-CcZ3LrYnVv2wufA9LnzI32-il8guLL8Jg_eBU_xG961Sf7KeXuId-HM_m06_F6fnJt-n4tNAMmqFoiTHQEKCNaVlVCi0UQEnqruYqt6ywXVVRzhU3XBiu8-e4bRtelcyatm3YHtrfzV3FcLu2aZDXYR3zIUnSGohgVAiSKbqjdAwpRdvJVXQ3Km4lEPnkity5IrMr8tkVSbOI7UQpw_m4-G_0f1R_ASSdlqQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2810732770</pqid></control><display><type>article</type><title>Energy Bandgap of Cd1−xZnxTe, Cd1−xZnxSe and Cd1−xZnxS Semiconductors: A First-Principles Analysis Based on Tran–Blaha–Modified Becke–Johnson Exchange Potential</title><source>SpringerLink Journals - AutoHoldings</source><creator>Mimouni, K. ; Mokdad, N. ; Beladjal, K. ; Kadri, A. ; Zitouni, K.</creator><creatorcontrib>Mimouni, K. ; Mokdad, N. ; Beladjal, K. ; Kadri, A. ; Zitouni, K.</creatorcontrib><description>This paper presents a first-principles investigation of the energy bandgaps of Cd 1− x Zn x Te, Cd 1− x Zn x Se and Cd 1− x Zn x S semiconductor alloys in zinc-blende crystals. The theoretical analysis is based on the full-potential linearized augmented plane wave method within both generalized gradient and local density approximations. Tran–Blaha-modified Becke–Johnson exchange potential was invoked to accurately provide bandgaps and their bowing parameters. A moderate nonlinear dependence with average bowing parameters around b  ~ 0.49 eV for Cd 1− x Zn x Te, b  ~ 0.68 eV Cd 1− x Zn x S, and b  ~ 0.63 eV for Cd 1− x Zn x Se was found. The origin of the nonlinearity is discussed in light of Zunger’s approach to conclude that it arises mainly from volume deformation.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-023-10357-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Alloys ; Approximation ; Bowing ; Bridgman method ; Cadmium ; Characterization and Evaluation of Materials ; Chemical vapor deposition ; Chemistry and Materials Science ; Electronics and Microelectronics ; Energy ; Energy gap ; First principles ; Instrumentation ; Materials Science ; Molecular beam epitaxy ; Nonlinearity ; Optical and Electronic Materials ; Organic chemicals ; Original Research Article ; Parameters ; Photovoltaic cells ; Plane waves ; Semiconductor materials ; Semiconductors ; Solid State Physics ; Zinc ; Zincblende</subject><ispartof>Journal of electronic materials, 2023-06, Vol.52 (6), p.4191-4201</ispartof><rights>The Minerals, Metals &amp; Materials Society 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-b0dd190129db3647c7a11408f85a0dde7ef66255a5d57d5c6645eb95643edbb93</citedby><cites>FETCH-LOGICAL-c319t-b0dd190129db3647c7a11408f85a0dde7ef66255a5d57d5c6645eb95643edbb93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-023-10357-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-023-10357-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Mimouni, K.</creatorcontrib><creatorcontrib>Mokdad, N.</creatorcontrib><creatorcontrib>Beladjal, K.</creatorcontrib><creatorcontrib>Kadri, A.</creatorcontrib><creatorcontrib>Zitouni, K.</creatorcontrib><title>Energy Bandgap of Cd1−xZnxTe, Cd1−xZnxSe and Cd1−xZnxS Semiconductors: A First-Principles Analysis Based on Tran–Blaha–Modified Becke–Johnson Exchange Potential</title><title>Journal of electronic materials</title><addtitle>J. Electron. Mater</addtitle><description>This paper presents a first-principles investigation of the energy bandgaps of Cd 1− x Zn x Te, Cd 1− x Zn x Se and Cd 1− x Zn x S semiconductor alloys in zinc-blende crystals. The theoretical analysis is based on the full-potential linearized augmented plane wave method within both generalized gradient and local density approximations. Tran–Blaha-modified Becke–Johnson exchange potential was invoked to accurately provide bandgaps and their bowing parameters. A moderate nonlinear dependence with average bowing parameters around b  ~ 0.49 eV for Cd 1− x Zn x Te, b  ~ 0.68 eV Cd 1− x Zn x S, and b  ~ 0.63 eV for Cd 1− x Zn x Se was found. The origin of the nonlinearity is discussed in light of Zunger’s approach to conclude that it arises mainly from volume deformation.</description><subject>Alloys</subject><subject>Approximation</subject><subject>Bowing</subject><subject>Bridgman method</subject><subject>Cadmium</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical vapor deposition</subject><subject>Chemistry and Materials Science</subject><subject>Electronics and Microelectronics</subject><subject>Energy</subject><subject>Energy gap</subject><subject>First principles</subject><subject>Instrumentation</subject><subject>Materials Science</subject><subject>Molecular beam epitaxy</subject><subject>Nonlinearity</subject><subject>Optical and Electronic Materials</subject><subject>Organic chemicals</subject><subject>Original Research Article</subject><subject>Parameters</subject><subject>Photovoltaic cells</subject><subject>Plane waves</subject><subject>Semiconductor materials</subject><subject>Semiconductors</subject><subject>Solid State Physics</subject><subject>Zinc</subject><subject>Zincblende</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kcFOGzEQhq2qlZrSvkBPlrh2wWOv17vckijQViCQSCXUi-W1vYnpYgd7IyW3HjmX1-CpeJIaglROPY1m5vtnNPMj9BnIARAiDhNAVZUFoawAwrgo6Bs0Al7mtK6u3qIRYRUUnDL-Hn1I6ZoQ4FDDCD3MvI2LLZ4obxZqhUOHpwYe7_5sfvrN3H55lV1anKHXBXxpb5wO3qz1EGI6wmN87GIaiovovHar3iY89qrfJpfyhmQNDh7Po_KPv-8nvVqqHM-CcZ3LrYnVv2wufA9LnzI32-il8guLL8Jg_eBU_xG961Sf7KeXuId-HM_m06_F6fnJt-n4tNAMmqFoiTHQEKCNaVlVCi0UQEnqruYqt6ywXVVRzhU3XBiu8-e4bRtelcyatm3YHtrfzV3FcLu2aZDXYR3zIUnSGohgVAiSKbqjdAwpRdvJVXQ3Km4lEPnkity5IrMr8tkVSbOI7UQpw_m4-G_0f1R_ASSdlqQ</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Mimouni, K.</creator><creator>Mokdad, N.</creator><creator>Beladjal, K.</creator><creator>Kadri, A.</creator><creator>Zitouni, K.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20230601</creationdate><title>Energy Bandgap of Cd1−xZnxTe, Cd1−xZnxSe and Cd1−xZnxS Semiconductors: A First-Principles Analysis Based on Tran–Blaha–Modified Becke–Johnson Exchange Potential</title><author>Mimouni, K. ; Mokdad, N. ; Beladjal, K. ; Kadri, A. ; Zitouni, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-b0dd190129db3647c7a11408f85a0dde7ef66255a5d57d5c6645eb95643edbb93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alloys</topic><topic>Approximation</topic><topic>Bowing</topic><topic>Bridgman method</topic><topic>Cadmium</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical vapor deposition</topic><topic>Chemistry and Materials Science</topic><topic>Electronics and Microelectronics</topic><topic>Energy</topic><topic>Energy gap</topic><topic>First principles</topic><topic>Instrumentation</topic><topic>Materials Science</topic><topic>Molecular beam epitaxy</topic><topic>Nonlinearity</topic><topic>Optical and Electronic Materials</topic><topic>Organic chemicals</topic><topic>Original Research Article</topic><topic>Parameters</topic><topic>Photovoltaic cells</topic><topic>Plane waves</topic><topic>Semiconductor materials</topic><topic>Semiconductors</topic><topic>Solid State Physics</topic><topic>Zinc</topic><topic>Zincblende</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mimouni, K.</creatorcontrib><creatorcontrib>Mokdad, N.</creatorcontrib><creatorcontrib>Beladjal, K.</creatorcontrib><creatorcontrib>Kadri, A.</creatorcontrib><creatorcontrib>Zitouni, K.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mimouni, K.</au><au>Mokdad, N.</au><au>Beladjal, K.</au><au>Kadri, A.</au><au>Zitouni, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy Bandgap of Cd1−xZnxTe, Cd1−xZnxSe and Cd1−xZnxS Semiconductors: A First-Principles Analysis Based on Tran–Blaha–Modified Becke–Johnson Exchange Potential</atitle><jtitle>Journal of electronic materials</jtitle><stitle>J. Electron. Mater</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>52</volume><issue>6</issue><spage>4191</spage><epage>4201</epage><pages>4191-4201</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>This paper presents a first-principles investigation of the energy bandgaps of Cd 1− x Zn x Te, Cd 1− x Zn x Se and Cd 1− x Zn x S semiconductor alloys in zinc-blende crystals. The theoretical analysis is based on the full-potential linearized augmented plane wave method within both generalized gradient and local density approximations. Tran–Blaha-modified Becke–Johnson exchange potential was invoked to accurately provide bandgaps and their bowing parameters. A moderate nonlinear dependence with average bowing parameters around b  ~ 0.49 eV for Cd 1− x Zn x Te, b  ~ 0.68 eV Cd 1− x Zn x S, and b  ~ 0.63 eV for Cd 1− x Zn x Se was found. The origin of the nonlinearity is discussed in light of Zunger’s approach to conclude that it arises mainly from volume deformation.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-023-10357-2</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2023-06, Vol.52 (6), p.4191-4201
issn 0361-5235
1543-186X
language eng
recordid cdi_proquest_journals_2810732770
source SpringerLink Journals - AutoHoldings
subjects Alloys
Approximation
Bowing
Bridgman method
Cadmium
Characterization and Evaluation of Materials
Chemical vapor deposition
Chemistry and Materials Science
Electronics and Microelectronics
Energy
Energy gap
First principles
Instrumentation
Materials Science
Molecular beam epitaxy
Nonlinearity
Optical and Electronic Materials
Organic chemicals
Original Research Article
Parameters
Photovoltaic cells
Plane waves
Semiconductor materials
Semiconductors
Solid State Physics
Zinc
Zincblende
title Energy Bandgap of Cd1−xZnxTe, Cd1−xZnxSe and Cd1−xZnxS Semiconductors: A First-Principles Analysis Based on Tran–Blaha–Modified Becke–Johnson Exchange Potential
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A28%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy%20Bandgap%20of%20Cd1%E2%88%92xZnxTe,%20Cd1%E2%88%92xZnxSe%20and%20Cd1%E2%88%92xZnxS%20Semiconductors:%20A%20First-Principles%20Analysis%20Based%20on%20Tran%E2%80%93Blaha%E2%80%93Modified%20Becke%E2%80%93Johnson%20Exchange%20Potential&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Mimouni,%20K.&rft.date=2023-06-01&rft.volume=52&rft.issue=6&rft.spage=4191&rft.epage=4201&rft.pages=4191-4201&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-023-10357-2&rft_dat=%3Cproquest_cross%3E2810732770%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2810732770&rft_id=info:pmid/&rfr_iscdi=true