Energy Bandgap of Cd1−xZnxTe, Cd1−xZnxSe and Cd1−xZnxS Semiconductors: A First-Principles Analysis Based on Tran–Blaha–Modified Becke–Johnson Exchange Potential
This paper presents a first-principles investigation of the energy bandgaps of Cd 1− x Zn x Te, Cd 1− x Zn x Se and Cd 1− x Zn x S semiconductor alloys in zinc-blende crystals. The theoretical analysis is based on the full-potential linearized augmented plane wave method within both generalized grad...
Gespeichert in:
Veröffentlicht in: | Journal of electronic materials 2023-06, Vol.52 (6), p.4191-4201 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4201 |
---|---|
container_issue | 6 |
container_start_page | 4191 |
container_title | Journal of electronic materials |
container_volume | 52 |
creator | Mimouni, K. Mokdad, N. Beladjal, K. Kadri, A. Zitouni, K. |
description | This paper presents a first-principles investigation of the energy bandgaps of Cd
1−
x
Zn
x
Te, Cd
1−
x
Zn
x
Se and Cd
1−
x
Zn
x
S semiconductor alloys in zinc-blende crystals. The theoretical analysis is based on the full-potential linearized augmented plane wave method within both generalized gradient and local density approximations. Tran–Blaha-modified Becke–Johnson exchange potential was invoked to accurately provide bandgaps and their bowing parameters. A moderate nonlinear dependence with average bowing parameters around
b
~ 0.49 eV for Cd
1−
x
Zn
x
Te,
b
~ 0.68 eV Cd
1−
x
Zn
x
S, and
b
~ 0.63 eV for Cd
1−
x
Zn
x
Se was found. The origin of the nonlinearity is discussed in light of Zunger’s approach to conclude that it arises mainly from volume deformation. |
doi_str_mv | 10.1007/s11664-023-10357-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2810732770</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2810732770</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-b0dd190129db3647c7a11408f85a0dde7ef66255a5d57d5c6645eb95643edbb93</originalsourceid><addsrcrecordid>eNp9kcFOGzEQhq2qlZrSvkBPlrh2wWOv17vckijQViCQSCXUi-W1vYnpYgd7IyW3HjmX1-CpeJIaglROPY1m5vtnNPMj9BnIARAiDhNAVZUFoawAwrgo6Bs0Al7mtK6u3qIRYRUUnDL-Hn1I6ZoQ4FDDCD3MvI2LLZ4obxZqhUOHpwYe7_5sfvrN3H55lV1anKHXBXxpb5wO3qz1EGI6wmN87GIaiovovHar3iY89qrfJpfyhmQNDh7Po_KPv-8nvVqqHM-CcZ3LrYnVv2wufA9LnzI32-il8guLL8Jg_eBU_xG961Sf7KeXuId-HM_m06_F6fnJt-n4tNAMmqFoiTHQEKCNaVlVCi0UQEnqruYqt6ywXVVRzhU3XBiu8-e4bRtelcyatm3YHtrfzV3FcLu2aZDXYR3zIUnSGohgVAiSKbqjdAwpRdvJVXQ3Km4lEPnkity5IrMr8tkVSbOI7UQpw_m4-G_0f1R_ASSdlqQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2810732770</pqid></control><display><type>article</type><title>Energy Bandgap of Cd1−xZnxTe, Cd1−xZnxSe and Cd1−xZnxS Semiconductors: A First-Principles Analysis Based on Tran–Blaha–Modified Becke–Johnson Exchange Potential</title><source>SpringerLink Journals - AutoHoldings</source><creator>Mimouni, K. ; Mokdad, N. ; Beladjal, K. ; Kadri, A. ; Zitouni, K.</creator><creatorcontrib>Mimouni, K. ; Mokdad, N. ; Beladjal, K. ; Kadri, A. ; Zitouni, K.</creatorcontrib><description>This paper presents a first-principles investigation of the energy bandgaps of Cd
1−
x
Zn
x
Te, Cd
1−
x
Zn
x
Se and Cd
1−
x
Zn
x
S semiconductor alloys in zinc-blende crystals. The theoretical analysis is based on the full-potential linearized augmented plane wave method within both generalized gradient and local density approximations. Tran–Blaha-modified Becke–Johnson exchange potential was invoked to accurately provide bandgaps and their bowing parameters. A moderate nonlinear dependence with average bowing parameters around
b
~ 0.49 eV for Cd
1−
x
Zn
x
Te,
b
~ 0.68 eV Cd
1−
x
Zn
x
S, and
b
~ 0.63 eV for Cd
1−
x
Zn
x
Se was found. The origin of the nonlinearity is discussed in light of Zunger’s approach to conclude that it arises mainly from volume deformation.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-023-10357-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Alloys ; Approximation ; Bowing ; Bridgman method ; Cadmium ; Characterization and Evaluation of Materials ; Chemical vapor deposition ; Chemistry and Materials Science ; Electronics and Microelectronics ; Energy ; Energy gap ; First principles ; Instrumentation ; Materials Science ; Molecular beam epitaxy ; Nonlinearity ; Optical and Electronic Materials ; Organic chemicals ; Original Research Article ; Parameters ; Photovoltaic cells ; Plane waves ; Semiconductor materials ; Semiconductors ; Solid State Physics ; Zinc ; Zincblende</subject><ispartof>Journal of electronic materials, 2023-06, Vol.52 (6), p.4191-4201</ispartof><rights>The Minerals, Metals & Materials Society 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-b0dd190129db3647c7a11408f85a0dde7ef66255a5d57d5c6645eb95643edbb93</citedby><cites>FETCH-LOGICAL-c319t-b0dd190129db3647c7a11408f85a0dde7ef66255a5d57d5c6645eb95643edbb93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-023-10357-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-023-10357-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Mimouni, K.</creatorcontrib><creatorcontrib>Mokdad, N.</creatorcontrib><creatorcontrib>Beladjal, K.</creatorcontrib><creatorcontrib>Kadri, A.</creatorcontrib><creatorcontrib>Zitouni, K.</creatorcontrib><title>Energy Bandgap of Cd1−xZnxTe, Cd1−xZnxSe and Cd1−xZnxS Semiconductors: A First-Principles Analysis Based on Tran–Blaha–Modified Becke–Johnson Exchange Potential</title><title>Journal of electronic materials</title><addtitle>J. Electron. Mater</addtitle><description>This paper presents a first-principles investigation of the energy bandgaps of Cd
1−
x
Zn
x
Te, Cd
1−
x
Zn
x
Se and Cd
1−
x
Zn
x
S semiconductor alloys in zinc-blende crystals. The theoretical analysis is based on the full-potential linearized augmented plane wave method within both generalized gradient and local density approximations. Tran–Blaha-modified Becke–Johnson exchange potential was invoked to accurately provide bandgaps and their bowing parameters. A moderate nonlinear dependence with average bowing parameters around
b
~ 0.49 eV for Cd
1−
x
Zn
x
Te,
b
~ 0.68 eV Cd
1−
x
Zn
x
S, and
b
~ 0.63 eV for Cd
1−
x
Zn
x
Se was found. The origin of the nonlinearity is discussed in light of Zunger’s approach to conclude that it arises mainly from volume deformation.</description><subject>Alloys</subject><subject>Approximation</subject><subject>Bowing</subject><subject>Bridgman method</subject><subject>Cadmium</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical vapor deposition</subject><subject>Chemistry and Materials Science</subject><subject>Electronics and Microelectronics</subject><subject>Energy</subject><subject>Energy gap</subject><subject>First principles</subject><subject>Instrumentation</subject><subject>Materials Science</subject><subject>Molecular beam epitaxy</subject><subject>Nonlinearity</subject><subject>Optical and Electronic Materials</subject><subject>Organic chemicals</subject><subject>Original Research Article</subject><subject>Parameters</subject><subject>Photovoltaic cells</subject><subject>Plane waves</subject><subject>Semiconductor materials</subject><subject>Semiconductors</subject><subject>Solid State Physics</subject><subject>Zinc</subject><subject>Zincblende</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kcFOGzEQhq2qlZrSvkBPlrh2wWOv17vckijQViCQSCXUi-W1vYnpYgd7IyW3HjmX1-CpeJIaglROPY1m5vtnNPMj9BnIARAiDhNAVZUFoawAwrgo6Bs0Al7mtK6u3qIRYRUUnDL-Hn1I6ZoQ4FDDCD3MvI2LLZ4obxZqhUOHpwYe7_5sfvrN3H55lV1anKHXBXxpb5wO3qz1EGI6wmN87GIaiovovHar3iY89qrfJpfyhmQNDh7Po_KPv-8nvVqqHM-CcZ3LrYnVv2wufA9LnzI32-il8guLL8Jg_eBU_xG961Sf7KeXuId-HM_m06_F6fnJt-n4tNAMmqFoiTHQEKCNaVlVCi0UQEnqruYqt6ywXVVRzhU3XBiu8-e4bRtelcyatm3YHtrfzV3FcLu2aZDXYR3zIUnSGohgVAiSKbqjdAwpRdvJVXQ3Km4lEPnkity5IrMr8tkVSbOI7UQpw_m4-G_0f1R_ASSdlqQ</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Mimouni, K.</creator><creator>Mokdad, N.</creator><creator>Beladjal, K.</creator><creator>Kadri, A.</creator><creator>Zitouni, K.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20230601</creationdate><title>Energy Bandgap of Cd1−xZnxTe, Cd1−xZnxSe and Cd1−xZnxS Semiconductors: A First-Principles Analysis Based on Tran–Blaha–Modified Becke–Johnson Exchange Potential</title><author>Mimouni, K. ; Mokdad, N. ; Beladjal, K. ; Kadri, A. ; Zitouni, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-b0dd190129db3647c7a11408f85a0dde7ef66255a5d57d5c6645eb95643edbb93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alloys</topic><topic>Approximation</topic><topic>Bowing</topic><topic>Bridgman method</topic><topic>Cadmium</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical vapor deposition</topic><topic>Chemistry and Materials Science</topic><topic>Electronics and Microelectronics</topic><topic>Energy</topic><topic>Energy gap</topic><topic>First principles</topic><topic>Instrumentation</topic><topic>Materials Science</topic><topic>Molecular beam epitaxy</topic><topic>Nonlinearity</topic><topic>Optical and Electronic Materials</topic><topic>Organic chemicals</topic><topic>Original Research Article</topic><topic>Parameters</topic><topic>Photovoltaic cells</topic><topic>Plane waves</topic><topic>Semiconductor materials</topic><topic>Semiconductors</topic><topic>Solid State Physics</topic><topic>Zinc</topic><topic>Zincblende</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mimouni, K.</creatorcontrib><creatorcontrib>Mokdad, N.</creatorcontrib><creatorcontrib>Beladjal, K.</creatorcontrib><creatorcontrib>Kadri, A.</creatorcontrib><creatorcontrib>Zitouni, K.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mimouni, K.</au><au>Mokdad, N.</au><au>Beladjal, K.</au><au>Kadri, A.</au><au>Zitouni, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy Bandgap of Cd1−xZnxTe, Cd1−xZnxSe and Cd1−xZnxS Semiconductors: A First-Principles Analysis Based on Tran–Blaha–Modified Becke–Johnson Exchange Potential</atitle><jtitle>Journal of electronic materials</jtitle><stitle>J. Electron. Mater</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>52</volume><issue>6</issue><spage>4191</spage><epage>4201</epage><pages>4191-4201</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>This paper presents a first-principles investigation of the energy bandgaps of Cd
1−
x
Zn
x
Te, Cd
1−
x
Zn
x
Se and Cd
1−
x
Zn
x
S semiconductor alloys in zinc-blende crystals. The theoretical analysis is based on the full-potential linearized augmented plane wave method within both generalized gradient and local density approximations. Tran–Blaha-modified Becke–Johnson exchange potential was invoked to accurately provide bandgaps and their bowing parameters. A moderate nonlinear dependence with average bowing parameters around
b
~ 0.49 eV for Cd
1−
x
Zn
x
Te,
b
~ 0.68 eV Cd
1−
x
Zn
x
S, and
b
~ 0.63 eV for Cd
1−
x
Zn
x
Se was found. The origin of the nonlinearity is discussed in light of Zunger’s approach to conclude that it arises mainly from volume deformation.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-023-10357-2</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-5235 |
ispartof | Journal of electronic materials, 2023-06, Vol.52 (6), p.4191-4201 |
issn | 0361-5235 1543-186X |
language | eng |
recordid | cdi_proquest_journals_2810732770 |
source | SpringerLink Journals - AutoHoldings |
subjects | Alloys Approximation Bowing Bridgman method Cadmium Characterization and Evaluation of Materials Chemical vapor deposition Chemistry and Materials Science Electronics and Microelectronics Energy Energy gap First principles Instrumentation Materials Science Molecular beam epitaxy Nonlinearity Optical and Electronic Materials Organic chemicals Original Research Article Parameters Photovoltaic cells Plane waves Semiconductor materials Semiconductors Solid State Physics Zinc Zincblende |
title | Energy Bandgap of Cd1−xZnxTe, Cd1−xZnxSe and Cd1−xZnxS Semiconductors: A First-Principles Analysis Based on Tran–Blaha–Modified Becke–Johnson Exchange Potential |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A28%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy%20Bandgap%20of%20Cd1%E2%88%92xZnxTe,%20Cd1%E2%88%92xZnxSe%20and%20Cd1%E2%88%92xZnxS%20Semiconductors:%20A%20First-Principles%20Analysis%20Based%20on%20Tran%E2%80%93Blaha%E2%80%93Modified%20Becke%E2%80%93Johnson%20Exchange%20Potential&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Mimouni,%20K.&rft.date=2023-06-01&rft.volume=52&rft.issue=6&rft.spage=4191&rft.epage=4201&rft.pages=4191-4201&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-023-10357-2&rft_dat=%3Cproquest_cross%3E2810732770%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2810732770&rft_id=info:pmid/&rfr_iscdi=true |