Chinese Event Extraction Method Based on Roformer Model

Event extraction is an important research direction in the field of natural language processing. The current Chinese event extraction field still suffers from errors in the pretraining and fine-tuning stages, inability to directly handle texts with more than 512 tokens, and inaccurate event extracti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wireless communications and mobile computing 2023, Vol.2023, p.1-8
Hauptverfasser: Qiang, Baohua, Zhou, Xiangyu, Wang, Yufeng, Yang, Xianyi, Wang, Yuemeng, Tian, Jubo, Chen, Peng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue
container_start_page 1
container_title Wireless communications and mobile computing
container_volume 2023
creator Qiang, Baohua
Zhou, Xiangyu
Wang, Yufeng
Yang, Xianyi
Wang, Yuemeng
Tian, Jubo
Chen, Peng
description Event extraction is an important research direction in the field of natural language processing. The current Chinese event extraction field still suffers from errors in the pretraining and fine-tuning stages, inability to directly handle texts with more than 512 tokens, and inaccurate event extraction due to insufficient semantic sample diversity. In this paper, we propose a Chinese event extraction method RoformerFC (Roformer model with FGM and CRF) based on the Roformer model to address the above problems. Firstly, our method utilizes the Roformer model based on rotary position embedding, which both moderates the errors in the pretraining and fine-tuning phases and allows the model to directly handle texts with more than 512 tokens; then, the adversarial networks based on FGM (fast gradient method) are realized to increase the diversity of semantic feature samples; finally, the classical CRF (conditional random fields) model is used to decode and identify the event element entity and its corresponding event role and event type. On the short text DuEE dataset, the microP, microR, and microF of our method improved 1.26%, 4.01%, and 2.68%, respectively, over the classical Chinese event extraction method BERT-CRF. On the long text JsEE dataset, the microP, microR, and microF of our method improved 2.26%, 5.03%, and 3.72%, respectively, over the classical Chinese event extraction method BERT-CRF.
doi_str_mv 10.1155/2023/8268651
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2810640298</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2810640298</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2091-29461498d49d8809250b67f1e9186829dddc8ece742559f0bdf7ece1c42b9e893</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFZv_oCAR42d2WQ3u0cN8QNaBNHzkmQnNKXN1t3Uj39vSopHTzMvPLzDPIxdItwiCjHjwJOZ4lJJgUdsgiKBWMksO_7bpT5lZyGsACABjhOW5cu2o0BR8UldHxXfvS_rvnVdtKB-6Wx0Xway0ZBfXeP8hny0cJbW5-ykKdeBLg5zyt4firf8KZ6_PD7nd_O45qAx5jqVmGplU22VAs0FVDJrkDQqqbi21taKaspSLoRuoLJNNkSsU15pUjqZsquxd-vdx45Cb1Zu57vhpOEKQabAtRqom5GqvQvBU2O2vt2U_scgmL0as1djDmoG_HrEh99t-dX-T_8CqNZgpQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2810640298</pqid></control><display><type>article</type><title>Chinese Event Extraction Method Based on Roformer Model</title><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Qiang, Baohua ; Zhou, Xiangyu ; Wang, Yufeng ; Yang, Xianyi ; Wang, Yuemeng ; Tian, Jubo ; Chen, Peng</creator><contributor>Xue, Xingsi ; Xingsi Xue</contributor><creatorcontrib>Qiang, Baohua ; Zhou, Xiangyu ; Wang, Yufeng ; Yang, Xianyi ; Wang, Yuemeng ; Tian, Jubo ; Chen, Peng ; Xue, Xingsi ; Xingsi Xue</creatorcontrib><description>Event extraction is an important research direction in the field of natural language processing. The current Chinese event extraction field still suffers from errors in the pretraining and fine-tuning stages, inability to directly handle texts with more than 512 tokens, and inaccurate event extraction due to insufficient semantic sample diversity. In this paper, we propose a Chinese event extraction method RoformerFC (Roformer model with FGM and CRF) based on the Roformer model to address the above problems. Firstly, our method utilizes the Roformer model based on rotary position embedding, which both moderates the errors in the pretraining and fine-tuning phases and allows the model to directly handle texts with more than 512 tokens; then, the adversarial networks based on FGM (fast gradient method) are realized to increase the diversity of semantic feature samples; finally, the classical CRF (conditional random fields) model is used to decode and identify the event element entity and its corresponding event role and event type. On the short text DuEE dataset, the microP, microR, and microF of our method improved 1.26%, 4.01%, and 2.68%, respectively, over the classical Chinese event extraction method BERT-CRF. On the long text JsEE dataset, the microP, microR, and microF of our method improved 2.26%, 5.03%, and 3.72%, respectively, over the classical Chinese event extraction method BERT-CRF.</description><identifier>ISSN: 1530-8669</identifier><identifier>EISSN: 1530-8677</identifier><identifier>DOI: 10.1155/2023/8268651</identifier><language>eng</language><publisher>Oxford: Hindawi</publisher><subject>Conditional random fields ; Datasets ; Deep learning ; Errors ; Language ; Methods ; Natural language ; Natural language processing ; Neural networks ; Semantics ; Texts</subject><ispartof>Wireless communications and mobile computing, 2023, Vol.2023, p.1-8</ispartof><rights>Copyright © 2023 Baohua Qiang et al.</rights><rights>Copyright © 2023 Baohua Qiang et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2091-29461498d49d8809250b67f1e9186829dddc8ece742559f0bdf7ece1c42b9e893</cites><orcidid>0000-0002-9026-7934 ; 0000-0002-3469-6590</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><contributor>Xue, Xingsi</contributor><contributor>Xingsi Xue</contributor><creatorcontrib>Qiang, Baohua</creatorcontrib><creatorcontrib>Zhou, Xiangyu</creatorcontrib><creatorcontrib>Wang, Yufeng</creatorcontrib><creatorcontrib>Yang, Xianyi</creatorcontrib><creatorcontrib>Wang, Yuemeng</creatorcontrib><creatorcontrib>Tian, Jubo</creatorcontrib><creatorcontrib>Chen, Peng</creatorcontrib><title>Chinese Event Extraction Method Based on Roformer Model</title><title>Wireless communications and mobile computing</title><description>Event extraction is an important research direction in the field of natural language processing. The current Chinese event extraction field still suffers from errors in the pretraining and fine-tuning stages, inability to directly handle texts with more than 512 tokens, and inaccurate event extraction due to insufficient semantic sample diversity. In this paper, we propose a Chinese event extraction method RoformerFC (Roformer model with FGM and CRF) based on the Roformer model to address the above problems. Firstly, our method utilizes the Roformer model based on rotary position embedding, which both moderates the errors in the pretraining and fine-tuning phases and allows the model to directly handle texts with more than 512 tokens; then, the adversarial networks based on FGM (fast gradient method) are realized to increase the diversity of semantic feature samples; finally, the classical CRF (conditional random fields) model is used to decode and identify the event element entity and its corresponding event role and event type. On the short text DuEE dataset, the microP, microR, and microF of our method improved 1.26%, 4.01%, and 2.68%, respectively, over the classical Chinese event extraction method BERT-CRF. On the long text JsEE dataset, the microP, microR, and microF of our method improved 2.26%, 5.03%, and 3.72%, respectively, over the classical Chinese event extraction method BERT-CRF.</description><subject>Conditional random fields</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Errors</subject><subject>Language</subject><subject>Methods</subject><subject>Natural language</subject><subject>Natural language processing</subject><subject>Neural networks</subject><subject>Semantics</subject><subject>Texts</subject><issn>1530-8669</issn><issn>1530-8677</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1Lw0AQhhdRsFZv_oCAR42d2WQ3u0cN8QNaBNHzkmQnNKXN1t3Uj39vSopHTzMvPLzDPIxdItwiCjHjwJOZ4lJJgUdsgiKBWMksO_7bpT5lZyGsACABjhOW5cu2o0BR8UldHxXfvS_rvnVdtKB-6Wx0Xway0ZBfXeP8hny0cJbW5-ykKdeBLg5zyt4firf8KZ6_PD7nd_O45qAx5jqVmGplU22VAs0FVDJrkDQqqbi21taKaspSLoRuoLJNNkSsU15pUjqZsquxd-vdx45Cb1Zu57vhpOEKQabAtRqom5GqvQvBU2O2vt2U_scgmL0as1djDmoG_HrEh99t-dX-T_8CqNZgpQ</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Qiang, Baohua</creator><creator>Zhou, Xiangyu</creator><creator>Wang, Yufeng</creator><creator>Yang, Xianyi</creator><creator>Wang, Yuemeng</creator><creator>Tian, Jubo</creator><creator>Chen, Peng</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-9026-7934</orcidid><orcidid>https://orcid.org/0000-0002-3469-6590</orcidid></search><sort><creationdate>2023</creationdate><title>Chinese Event Extraction Method Based on Roformer Model</title><author>Qiang, Baohua ; Zhou, Xiangyu ; Wang, Yufeng ; Yang, Xianyi ; Wang, Yuemeng ; Tian, Jubo ; Chen, Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2091-29461498d49d8809250b67f1e9186829dddc8ece742559f0bdf7ece1c42b9e893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Conditional random fields</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Errors</topic><topic>Language</topic><topic>Methods</topic><topic>Natural language</topic><topic>Natural language processing</topic><topic>Neural networks</topic><topic>Semantics</topic><topic>Texts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiang, Baohua</creatorcontrib><creatorcontrib>Zhou, Xiangyu</creatorcontrib><creatorcontrib>Wang, Yufeng</creatorcontrib><creatorcontrib>Yang, Xianyi</creatorcontrib><creatorcontrib>Wang, Yuemeng</creatorcontrib><creatorcontrib>Tian, Jubo</creatorcontrib><creatorcontrib>Chen, Peng</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Wireless communications and mobile computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiang, Baohua</au><au>Zhou, Xiangyu</au><au>Wang, Yufeng</au><au>Yang, Xianyi</au><au>Wang, Yuemeng</au><au>Tian, Jubo</au><au>Chen, Peng</au><au>Xue, Xingsi</au><au>Xingsi Xue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chinese Event Extraction Method Based on Roformer Model</atitle><jtitle>Wireless communications and mobile computing</jtitle><date>2023</date><risdate>2023</risdate><volume>2023</volume><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>1530-8669</issn><eissn>1530-8677</eissn><abstract>Event extraction is an important research direction in the field of natural language processing. The current Chinese event extraction field still suffers from errors in the pretraining and fine-tuning stages, inability to directly handle texts with more than 512 tokens, and inaccurate event extraction due to insufficient semantic sample diversity. In this paper, we propose a Chinese event extraction method RoformerFC (Roformer model with FGM and CRF) based on the Roformer model to address the above problems. Firstly, our method utilizes the Roformer model based on rotary position embedding, which both moderates the errors in the pretraining and fine-tuning phases and allows the model to directly handle texts with more than 512 tokens; then, the adversarial networks based on FGM (fast gradient method) are realized to increase the diversity of semantic feature samples; finally, the classical CRF (conditional random fields) model is used to decode and identify the event element entity and its corresponding event role and event type. On the short text DuEE dataset, the microP, microR, and microF of our method improved 1.26%, 4.01%, and 2.68%, respectively, over the classical Chinese event extraction method BERT-CRF. On the long text JsEE dataset, the microP, microR, and microF of our method improved 2.26%, 5.03%, and 3.72%, respectively, over the classical Chinese event extraction method BERT-CRF.</abstract><cop>Oxford</cop><pub>Hindawi</pub><doi>10.1155/2023/8268651</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9026-7934</orcidid><orcidid>https://orcid.org/0000-0002-3469-6590</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1530-8669
ispartof Wireless communications and mobile computing, 2023, Vol.2023, p.1-8
issn 1530-8669
1530-8677
language eng
recordid cdi_proquest_journals_2810640298
source Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Conditional random fields
Datasets
Deep learning
Errors
Language
Methods
Natural language
Natural language processing
Neural networks
Semantics
Texts
title Chinese Event Extraction Method Based on Roformer Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T04%3A18%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chinese%20Event%20Extraction%20Method%20Based%20on%20Roformer%20Model&rft.jtitle=Wireless%20communications%20and%20mobile%20computing&rft.au=Qiang,%20Baohua&rft.date=2023&rft.volume=2023&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=1530-8669&rft.eissn=1530-8677&rft_id=info:doi/10.1155/2023/8268651&rft_dat=%3Cproquest_cross%3E2810640298%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2810640298&rft_id=info:pmid/&rfr_iscdi=true