Chinese Event Extraction Method Based on Roformer Model
Event extraction is an important research direction in the field of natural language processing. The current Chinese event extraction field still suffers from errors in the pretraining and fine-tuning stages, inability to directly handle texts with more than 512 tokens, and inaccurate event extracti...
Gespeichert in:
Veröffentlicht in: | Wireless communications and mobile computing 2023, Vol.2023, p.1-8 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Wireless communications and mobile computing |
container_volume | 2023 |
creator | Qiang, Baohua Zhou, Xiangyu Wang, Yufeng Yang, Xianyi Wang, Yuemeng Tian, Jubo Chen, Peng |
description | Event extraction is an important research direction in the field of natural language processing. The current Chinese event extraction field still suffers from errors in the pretraining and fine-tuning stages, inability to directly handle texts with more than 512 tokens, and inaccurate event extraction due to insufficient semantic sample diversity. In this paper, we propose a Chinese event extraction method RoformerFC (Roformer model with FGM and CRF) based on the Roformer model to address the above problems. Firstly, our method utilizes the Roformer model based on rotary position embedding, which both moderates the errors in the pretraining and fine-tuning phases and allows the model to directly handle texts with more than 512 tokens; then, the adversarial networks based on FGM (fast gradient method) are realized to increase the diversity of semantic feature samples; finally, the classical CRF (conditional random fields) model is used to decode and identify the event element entity and its corresponding event role and event type. On the short text DuEE dataset, the microP, microR, and microF of our method improved 1.26%, 4.01%, and 2.68%, respectively, over the classical Chinese event extraction method BERT-CRF. On the long text JsEE dataset, the microP, microR, and microF of our method improved 2.26%, 5.03%, and 3.72%, respectively, over the classical Chinese event extraction method BERT-CRF. |
doi_str_mv | 10.1155/2023/8268651 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2810640298</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2810640298</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2091-29461498d49d8809250b67f1e9186829dddc8ece742559f0bdf7ece1c42b9e893</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFZv_oCAR42d2WQ3u0cN8QNaBNHzkmQnNKXN1t3Uj39vSopHTzMvPLzDPIxdItwiCjHjwJOZ4lJJgUdsgiKBWMksO_7bpT5lZyGsACABjhOW5cu2o0BR8UldHxXfvS_rvnVdtKB-6Wx0Xway0ZBfXeP8hny0cJbW5-ykKdeBLg5zyt4firf8KZ6_PD7nd_O45qAx5jqVmGplU22VAs0FVDJrkDQqqbi21taKaspSLoRuoLJNNkSsU15pUjqZsquxd-vdx45Cb1Zu57vhpOEKQabAtRqom5GqvQvBU2O2vt2U_scgmL0as1djDmoG_HrEh99t-dX-T_8CqNZgpQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2810640298</pqid></control><display><type>article</type><title>Chinese Event Extraction Method Based on Roformer Model</title><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Qiang, Baohua ; Zhou, Xiangyu ; Wang, Yufeng ; Yang, Xianyi ; Wang, Yuemeng ; Tian, Jubo ; Chen, Peng</creator><contributor>Xue, Xingsi ; Xingsi Xue</contributor><creatorcontrib>Qiang, Baohua ; Zhou, Xiangyu ; Wang, Yufeng ; Yang, Xianyi ; Wang, Yuemeng ; Tian, Jubo ; Chen, Peng ; Xue, Xingsi ; Xingsi Xue</creatorcontrib><description>Event extraction is an important research direction in the field of natural language processing. The current Chinese event extraction field still suffers from errors in the pretraining and fine-tuning stages, inability to directly handle texts with more than 512 tokens, and inaccurate event extraction due to insufficient semantic sample diversity. In this paper, we propose a Chinese event extraction method RoformerFC (Roformer model with FGM and CRF) based on the Roformer model to address the above problems. Firstly, our method utilizes the Roformer model based on rotary position embedding, which both moderates the errors in the pretraining and fine-tuning phases and allows the model to directly handle texts with more than 512 tokens; then, the adversarial networks based on FGM (fast gradient method) are realized to increase the diversity of semantic feature samples; finally, the classical CRF (conditional random fields) model is used to decode and identify the event element entity and its corresponding event role and event type. On the short text DuEE dataset, the microP, microR, and microF of our method improved 1.26%, 4.01%, and 2.68%, respectively, over the classical Chinese event extraction method BERT-CRF. On the long text JsEE dataset, the microP, microR, and microF of our method improved 2.26%, 5.03%, and 3.72%, respectively, over the classical Chinese event extraction method BERT-CRF.</description><identifier>ISSN: 1530-8669</identifier><identifier>EISSN: 1530-8677</identifier><identifier>DOI: 10.1155/2023/8268651</identifier><language>eng</language><publisher>Oxford: Hindawi</publisher><subject>Conditional random fields ; Datasets ; Deep learning ; Errors ; Language ; Methods ; Natural language ; Natural language processing ; Neural networks ; Semantics ; Texts</subject><ispartof>Wireless communications and mobile computing, 2023, Vol.2023, p.1-8</ispartof><rights>Copyright © 2023 Baohua Qiang et al.</rights><rights>Copyright © 2023 Baohua Qiang et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2091-29461498d49d8809250b67f1e9186829dddc8ece742559f0bdf7ece1c42b9e893</cites><orcidid>0000-0002-9026-7934 ; 0000-0002-3469-6590</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><contributor>Xue, Xingsi</contributor><contributor>Xingsi Xue</contributor><creatorcontrib>Qiang, Baohua</creatorcontrib><creatorcontrib>Zhou, Xiangyu</creatorcontrib><creatorcontrib>Wang, Yufeng</creatorcontrib><creatorcontrib>Yang, Xianyi</creatorcontrib><creatorcontrib>Wang, Yuemeng</creatorcontrib><creatorcontrib>Tian, Jubo</creatorcontrib><creatorcontrib>Chen, Peng</creatorcontrib><title>Chinese Event Extraction Method Based on Roformer Model</title><title>Wireless communications and mobile computing</title><description>Event extraction is an important research direction in the field of natural language processing. The current Chinese event extraction field still suffers from errors in the pretraining and fine-tuning stages, inability to directly handle texts with more than 512 tokens, and inaccurate event extraction due to insufficient semantic sample diversity. In this paper, we propose a Chinese event extraction method RoformerFC (Roformer model with FGM and CRF) based on the Roformer model to address the above problems. Firstly, our method utilizes the Roformer model based on rotary position embedding, which both moderates the errors in the pretraining and fine-tuning phases and allows the model to directly handle texts with more than 512 tokens; then, the adversarial networks based on FGM (fast gradient method) are realized to increase the diversity of semantic feature samples; finally, the classical CRF (conditional random fields) model is used to decode and identify the event element entity and its corresponding event role and event type. On the short text DuEE dataset, the microP, microR, and microF of our method improved 1.26%, 4.01%, and 2.68%, respectively, over the classical Chinese event extraction method BERT-CRF. On the long text JsEE dataset, the microP, microR, and microF of our method improved 2.26%, 5.03%, and 3.72%, respectively, over the classical Chinese event extraction method BERT-CRF.</description><subject>Conditional random fields</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Errors</subject><subject>Language</subject><subject>Methods</subject><subject>Natural language</subject><subject>Natural language processing</subject><subject>Neural networks</subject><subject>Semantics</subject><subject>Texts</subject><issn>1530-8669</issn><issn>1530-8677</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1Lw0AQhhdRsFZv_oCAR42d2WQ3u0cN8QNaBNHzkmQnNKXN1t3Uj39vSopHTzMvPLzDPIxdItwiCjHjwJOZ4lJJgUdsgiKBWMksO_7bpT5lZyGsACABjhOW5cu2o0BR8UldHxXfvS_rvnVdtKB-6Wx0Xway0ZBfXeP8hny0cJbW5-ykKdeBLg5zyt4firf8KZ6_PD7nd_O45qAx5jqVmGplU22VAs0FVDJrkDQqqbi21taKaspSLoRuoLJNNkSsU15pUjqZsquxd-vdx45Cb1Zu57vhpOEKQabAtRqom5GqvQvBU2O2vt2U_scgmL0as1djDmoG_HrEh99t-dX-T_8CqNZgpQ</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Qiang, Baohua</creator><creator>Zhou, Xiangyu</creator><creator>Wang, Yufeng</creator><creator>Yang, Xianyi</creator><creator>Wang, Yuemeng</creator><creator>Tian, Jubo</creator><creator>Chen, Peng</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-9026-7934</orcidid><orcidid>https://orcid.org/0000-0002-3469-6590</orcidid></search><sort><creationdate>2023</creationdate><title>Chinese Event Extraction Method Based on Roformer Model</title><author>Qiang, Baohua ; Zhou, Xiangyu ; Wang, Yufeng ; Yang, Xianyi ; Wang, Yuemeng ; Tian, Jubo ; Chen, Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2091-29461498d49d8809250b67f1e9186829dddc8ece742559f0bdf7ece1c42b9e893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Conditional random fields</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Errors</topic><topic>Language</topic><topic>Methods</topic><topic>Natural language</topic><topic>Natural language processing</topic><topic>Neural networks</topic><topic>Semantics</topic><topic>Texts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiang, Baohua</creatorcontrib><creatorcontrib>Zhou, Xiangyu</creatorcontrib><creatorcontrib>Wang, Yufeng</creatorcontrib><creatorcontrib>Yang, Xianyi</creatorcontrib><creatorcontrib>Wang, Yuemeng</creatorcontrib><creatorcontrib>Tian, Jubo</creatorcontrib><creatorcontrib>Chen, Peng</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Wireless communications and mobile computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiang, Baohua</au><au>Zhou, Xiangyu</au><au>Wang, Yufeng</au><au>Yang, Xianyi</au><au>Wang, Yuemeng</au><au>Tian, Jubo</au><au>Chen, Peng</au><au>Xue, Xingsi</au><au>Xingsi Xue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chinese Event Extraction Method Based on Roformer Model</atitle><jtitle>Wireless communications and mobile computing</jtitle><date>2023</date><risdate>2023</risdate><volume>2023</volume><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>1530-8669</issn><eissn>1530-8677</eissn><abstract>Event extraction is an important research direction in the field of natural language processing. The current Chinese event extraction field still suffers from errors in the pretraining and fine-tuning stages, inability to directly handle texts with more than 512 tokens, and inaccurate event extraction due to insufficient semantic sample diversity. In this paper, we propose a Chinese event extraction method RoformerFC (Roformer model with FGM and CRF) based on the Roformer model to address the above problems. Firstly, our method utilizes the Roformer model based on rotary position embedding, which both moderates the errors in the pretraining and fine-tuning phases and allows the model to directly handle texts with more than 512 tokens; then, the adversarial networks based on FGM (fast gradient method) are realized to increase the diversity of semantic feature samples; finally, the classical CRF (conditional random fields) model is used to decode and identify the event element entity and its corresponding event role and event type. On the short text DuEE dataset, the microP, microR, and microF of our method improved 1.26%, 4.01%, and 2.68%, respectively, over the classical Chinese event extraction method BERT-CRF. On the long text JsEE dataset, the microP, microR, and microF of our method improved 2.26%, 5.03%, and 3.72%, respectively, over the classical Chinese event extraction method BERT-CRF.</abstract><cop>Oxford</cop><pub>Hindawi</pub><doi>10.1155/2023/8268651</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9026-7934</orcidid><orcidid>https://orcid.org/0000-0002-3469-6590</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-8669 |
ispartof | Wireless communications and mobile computing, 2023, Vol.2023, p.1-8 |
issn | 1530-8669 1530-8677 |
language | eng |
recordid | cdi_proquest_journals_2810640298 |
source | Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Conditional random fields Datasets Deep learning Errors Language Methods Natural language Natural language processing Neural networks Semantics Texts |
title | Chinese Event Extraction Method Based on Roformer Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T04%3A18%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chinese%20Event%20Extraction%20Method%20Based%20on%20Roformer%20Model&rft.jtitle=Wireless%20communications%20and%20mobile%20computing&rft.au=Qiang,%20Baohua&rft.date=2023&rft.volume=2023&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=1530-8669&rft.eissn=1530-8677&rft_id=info:doi/10.1155/2023/8268651&rft_dat=%3Cproquest_cross%3E2810640298%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2810640298&rft_id=info:pmid/&rfr_iscdi=true |