Modular functions and resolvent problems
The link between modular functions and algebraic functions was a driving force behind the 19th century study of both. Examples include the solutions by Hermite and Klein of the quintic via elliptic modular functions and the general sextic via level 2 hyperelliptic functions. This paper aims to apply...
Gespeichert in:
Veröffentlicht in: | Mathematische annalen 2023-01, Vol.386 (1-2), p.113-150 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 150 |
---|---|
container_issue | 1-2 |
container_start_page | 113 |
container_title | Mathematische annalen |
container_volume | 386 |
creator | Farb Benson Kisin, Mark Wolfson, Jesse |
description | The link between modular functions and algebraic functions was a driving force behind the 19th century study of both. Examples include the solutions by Hermite and Klein of the quintic via elliptic modular functions and the general sextic via level 2 hyperelliptic functions. This paper aims to apply modern arithmetic techniques to the circle of “resolvent problems” formulated and pursued by Klein, Hilbert and others. As one example, we prove that the essential dimension at p=2 for the symmetric groups Sn is equal to the essential dimension at 2 of certain Sn-coverings defined using moduli spaces of principally polarized abelian varieties. Our proofs use the deformation theory of abelian varieties in characteristic p, specifically Serre-Tate theory, as well as a family of remarkable mod 2 symplectic Sn-representations constructed by Jordan. As shown in an appendix by Nate Harman, the properties we need for such representations exist only in the p=2 case. In the second half of this paper we introduce the notion of E-versality as a kind of generalization of Kummer theory, and we prove that many congruence covers are E-versal. We use these E-versality result to deduce the equivalence of Hilbert’s 13th Problem (and related conjectures) with problems about congruence covers. |
doi_str_mv | 10.1007/s00208-022-02395-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2810188453</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2810188453</sourcerecordid><originalsourceid>FETCH-LOGICAL-c773-98b40182e206846829261e8fa979278da4e2be6102e7f4f9bce0881c4b4b168c3</originalsourceid><addsrcrecordid>eNotjc1KxDAURoMoWEdfwFXBjZvovTdJc7OUwT8YcTP7oWlvwKGm2rQ-vwVdfJzFB-codY1whwD-vgAQsAaidSY4zSeqQmtII4M_VdX6O-3Y4Lm6KOUIAAbAVer2beyXoZ3qtORu_hhzqdvc15OUcfiRPNdf0xgH-SyX6iy1Q5Grf27U_ulxv33Ru_fn1-3DTnfeGx04WkAmIWjYNkyBGhRObfCBPPetFYrSIJD4ZFOInQAzdjbaiA13ZqNu_rRr93uRMh-O4zLltXggxlXN1hnzCwcbQd8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2810188453</pqid></control><display><type>article</type><title>Modular functions and resolvent problems</title><source>SpringerLink Journals</source><creator>Farb Benson ; Kisin, Mark ; Wolfson, Jesse</creator><creatorcontrib>Farb Benson ; Kisin, Mark ; Wolfson, Jesse</creatorcontrib><description>The link between modular functions and algebraic functions was a driving force behind the 19th century study of both. Examples include the solutions by Hermite and Klein of the quintic via elliptic modular functions and the general sextic via level 2 hyperelliptic functions. This paper aims to apply modern arithmetic techniques to the circle of “resolvent problems” formulated and pursued by Klein, Hilbert and others. As one example, we prove that the essential dimension at p=2 for the symmetric groups Sn is equal to the essential dimension at 2 of certain Sn-coverings defined using moduli spaces of principally polarized abelian varieties. Our proofs use the deformation theory of abelian varieties in characteristic p, specifically Serre-Tate theory, as well as a family of remarkable mod 2 symplectic Sn-representations constructed by Jordan. As shown in an appendix by Nate Harman, the properties we need for such representations exist only in the p=2 case. In the second half of this paper we introduce the notion of E-versality as a kind of generalization of Kummer theory, and we prove that many congruence covers are E-versal. We use these E-versality result to deduce the equivalence of Hilbert’s 13th Problem (and related conjectures) with problems about congruence covers.</description><identifier>ISSN: 0025-5831</identifier><identifier>EISSN: 1432-1807</identifier><identifier>DOI: 10.1007/s00208-022-02395-8</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Mathematical analysis ; Representations</subject><ispartof>Mathematische annalen, 2023-01, Vol.386 (1-2), p.113-150</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c773-98b40182e206846829261e8fa979278da4e2be6102e7f4f9bce0881c4b4b168c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Farb Benson</creatorcontrib><creatorcontrib>Kisin, Mark</creatorcontrib><creatorcontrib>Wolfson, Jesse</creatorcontrib><title>Modular functions and resolvent problems</title><title>Mathematische annalen</title><description>The link between modular functions and algebraic functions was a driving force behind the 19th century study of both. Examples include the solutions by Hermite and Klein of the quintic via elliptic modular functions and the general sextic via level 2 hyperelliptic functions. This paper aims to apply modern arithmetic techniques to the circle of “resolvent problems” formulated and pursued by Klein, Hilbert and others. As one example, we prove that the essential dimension at p=2 for the symmetric groups Sn is equal to the essential dimension at 2 of certain Sn-coverings defined using moduli spaces of principally polarized abelian varieties. Our proofs use the deformation theory of abelian varieties in characteristic p, specifically Serre-Tate theory, as well as a family of remarkable mod 2 symplectic Sn-representations constructed by Jordan. As shown in an appendix by Nate Harman, the properties we need for such representations exist only in the p=2 case. In the second half of this paper we introduce the notion of E-versality as a kind of generalization of Kummer theory, and we prove that many congruence covers are E-versal. We use these E-versality result to deduce the equivalence of Hilbert’s 13th Problem (and related conjectures) with problems about congruence covers.</description><subject>Mathematical analysis</subject><subject>Representations</subject><issn>0025-5831</issn><issn>1432-1807</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNotjc1KxDAURoMoWEdfwFXBjZvovTdJc7OUwT8YcTP7oWlvwKGm2rQ-vwVdfJzFB-codY1whwD-vgAQsAaidSY4zSeqQmtII4M_VdX6O-3Y4Lm6KOUIAAbAVer2beyXoZ3qtORu_hhzqdvc15OUcfiRPNdf0xgH-SyX6iy1Q5Grf27U_ulxv33Ru_fn1-3DTnfeGx04WkAmIWjYNkyBGhRObfCBPPetFYrSIJD4ZFOInQAzdjbaiA13ZqNu_rRr93uRMh-O4zLltXggxlXN1hnzCwcbQd8</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Farb Benson</creator><creator>Kisin, Mark</creator><creator>Wolfson, Jesse</creator><general>Springer Nature B.V</general><scope/></search><sort><creationdate>20230101</creationdate><title>Modular functions and resolvent problems</title><author>Farb Benson ; Kisin, Mark ; Wolfson, Jesse</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c773-98b40182e206846829261e8fa979278da4e2be6102e7f4f9bce0881c4b4b168c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Mathematical analysis</topic><topic>Representations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Farb Benson</creatorcontrib><creatorcontrib>Kisin, Mark</creatorcontrib><creatorcontrib>Wolfson, Jesse</creatorcontrib><jtitle>Mathematische annalen</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Farb Benson</au><au>Kisin, Mark</au><au>Wolfson, Jesse</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modular functions and resolvent problems</atitle><jtitle>Mathematische annalen</jtitle><date>2023-01-01</date><risdate>2023</risdate><volume>386</volume><issue>1-2</issue><spage>113</spage><epage>150</epage><pages>113-150</pages><issn>0025-5831</issn><eissn>1432-1807</eissn><abstract>The link between modular functions and algebraic functions was a driving force behind the 19th century study of both. Examples include the solutions by Hermite and Klein of the quintic via elliptic modular functions and the general sextic via level 2 hyperelliptic functions. This paper aims to apply modern arithmetic techniques to the circle of “resolvent problems” formulated and pursued by Klein, Hilbert and others. As one example, we prove that the essential dimension at p=2 for the symmetric groups Sn is equal to the essential dimension at 2 of certain Sn-coverings defined using moduli spaces of principally polarized abelian varieties. Our proofs use the deformation theory of abelian varieties in characteristic p, specifically Serre-Tate theory, as well as a family of remarkable mod 2 symplectic Sn-representations constructed by Jordan. As shown in an appendix by Nate Harman, the properties we need for such representations exist only in the p=2 case. In the second half of this paper we introduce the notion of E-versality as a kind of generalization of Kummer theory, and we prove that many congruence covers are E-versal. We use these E-versality result to deduce the equivalence of Hilbert’s 13th Problem (and related conjectures) with problems about congruence covers.</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/s00208-022-02395-8</doi><tpages>38</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5831 |
ispartof | Mathematische annalen, 2023-01, Vol.386 (1-2), p.113-150 |
issn | 0025-5831 1432-1807 |
language | eng |
recordid | cdi_proquest_journals_2810188453 |
source | SpringerLink Journals |
subjects | Mathematical analysis Representations |
title | Modular functions and resolvent problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T09%3A27%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modular%20functions%20and%20resolvent%20problems&rft.jtitle=Mathematische%20annalen&rft.au=Farb%20Benson&rft.date=2023-01-01&rft.volume=386&rft.issue=1-2&rft.spage=113&rft.epage=150&rft.pages=113-150&rft.issn=0025-5831&rft.eissn=1432-1807&rft_id=info:doi/10.1007/s00208-022-02395-8&rft_dat=%3Cproquest%3E2810188453%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2810188453&rft_id=info:pmid/&rfr_iscdi=true |