Modular functions and resolvent problems

The link between modular functions and algebraic functions was a driving force behind the 19th century study of both. Examples include the solutions by Hermite and Klein of the quintic via elliptic modular functions and the general sextic via level 2 hyperelliptic functions. This paper aims to apply...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische annalen 2023-01, Vol.386 (1-2), p.113-150
Hauptverfasser: Farb Benson, Kisin, Mark, Wolfson, Jesse
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 150
container_issue 1-2
container_start_page 113
container_title Mathematische annalen
container_volume 386
creator Farb Benson
Kisin, Mark
Wolfson, Jesse
description The link between modular functions and algebraic functions was a driving force behind the 19th century study of both. Examples include the solutions by Hermite and Klein of the quintic via elliptic modular functions and the general sextic via level 2 hyperelliptic functions. This paper aims to apply modern arithmetic techniques to the circle of “resolvent problems” formulated and pursued by Klein, Hilbert and others. As one example, we prove that the essential dimension at p=2 for the symmetric groups Sn is equal to the essential dimension at 2 of certain Sn-coverings defined using moduli spaces of principally polarized abelian varieties. Our proofs use the deformation theory of abelian varieties in characteristic p, specifically Serre-Tate theory, as well as a family of remarkable mod 2 symplectic Sn-representations constructed by Jordan. As shown in an appendix by Nate Harman, the properties we need for such representations exist only in the p=2 case. In the second half of this paper we introduce the notion of E-versality as a kind of generalization of Kummer theory, and we prove that many congruence covers are E-versal. We use these E-versality result to deduce the equivalence of Hilbert’s 13th Problem (and related conjectures) with problems about congruence covers.
doi_str_mv 10.1007/s00208-022-02395-8
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2810188453</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2810188453</sourcerecordid><originalsourceid>FETCH-LOGICAL-c773-98b40182e206846829261e8fa979278da4e2be6102e7f4f9bce0881c4b4b168c3</originalsourceid><addsrcrecordid>eNotjc1KxDAURoMoWEdfwFXBjZvovTdJc7OUwT8YcTP7oWlvwKGm2rQ-vwVdfJzFB-codY1whwD-vgAQsAaidSY4zSeqQmtII4M_VdX6O-3Y4Lm6KOUIAAbAVer2beyXoZ3qtORu_hhzqdvc15OUcfiRPNdf0xgH-SyX6iy1Q5Grf27U_ulxv33Ru_fn1-3DTnfeGx04WkAmIWjYNkyBGhRObfCBPPetFYrSIJD4ZFOInQAzdjbaiA13ZqNu_rRr93uRMh-O4zLltXggxlXN1hnzCwcbQd8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2810188453</pqid></control><display><type>article</type><title>Modular functions and resolvent problems</title><source>SpringerLink Journals</source><creator>Farb Benson ; Kisin, Mark ; Wolfson, Jesse</creator><creatorcontrib>Farb Benson ; Kisin, Mark ; Wolfson, Jesse</creatorcontrib><description>The link between modular functions and algebraic functions was a driving force behind the 19th century study of both. Examples include the solutions by Hermite and Klein of the quintic via elliptic modular functions and the general sextic via level 2 hyperelliptic functions. This paper aims to apply modern arithmetic techniques to the circle of “resolvent problems” formulated and pursued by Klein, Hilbert and others. As one example, we prove that the essential dimension at p=2 for the symmetric groups Sn is equal to the essential dimension at 2 of certain Sn-coverings defined using moduli spaces of principally polarized abelian varieties. Our proofs use the deformation theory of abelian varieties in characteristic p, specifically Serre-Tate theory, as well as a family of remarkable mod 2 symplectic Sn-representations constructed by Jordan. As shown in an appendix by Nate Harman, the properties we need for such representations exist only in the p=2 case. In the second half of this paper we introduce the notion of E-versality as a kind of generalization of Kummer theory, and we prove that many congruence covers are E-versal. We use these E-versality result to deduce the equivalence of Hilbert’s 13th Problem (and related conjectures) with problems about congruence covers.</description><identifier>ISSN: 0025-5831</identifier><identifier>EISSN: 1432-1807</identifier><identifier>DOI: 10.1007/s00208-022-02395-8</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Mathematical analysis ; Representations</subject><ispartof>Mathematische annalen, 2023-01, Vol.386 (1-2), p.113-150</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c773-98b40182e206846829261e8fa979278da4e2be6102e7f4f9bce0881c4b4b168c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Farb Benson</creatorcontrib><creatorcontrib>Kisin, Mark</creatorcontrib><creatorcontrib>Wolfson, Jesse</creatorcontrib><title>Modular functions and resolvent problems</title><title>Mathematische annalen</title><description>The link between modular functions and algebraic functions was a driving force behind the 19th century study of both. Examples include the solutions by Hermite and Klein of the quintic via elliptic modular functions and the general sextic via level 2 hyperelliptic functions. This paper aims to apply modern arithmetic techniques to the circle of “resolvent problems” formulated and pursued by Klein, Hilbert and others. As one example, we prove that the essential dimension at p=2 for the symmetric groups Sn is equal to the essential dimension at 2 of certain Sn-coverings defined using moduli spaces of principally polarized abelian varieties. Our proofs use the deformation theory of abelian varieties in characteristic p, specifically Serre-Tate theory, as well as a family of remarkable mod 2 symplectic Sn-representations constructed by Jordan. As shown in an appendix by Nate Harman, the properties we need for such representations exist only in the p=2 case. In the second half of this paper we introduce the notion of E-versality as a kind of generalization of Kummer theory, and we prove that many congruence covers are E-versal. We use these E-versality result to deduce the equivalence of Hilbert’s 13th Problem (and related conjectures) with problems about congruence covers.</description><subject>Mathematical analysis</subject><subject>Representations</subject><issn>0025-5831</issn><issn>1432-1807</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNotjc1KxDAURoMoWEdfwFXBjZvovTdJc7OUwT8YcTP7oWlvwKGm2rQ-vwVdfJzFB-codY1whwD-vgAQsAaidSY4zSeqQmtII4M_VdX6O-3Y4Lm6KOUIAAbAVer2beyXoZ3qtORu_hhzqdvc15OUcfiRPNdf0xgH-SyX6iy1Q5Grf27U_ulxv33Ru_fn1-3DTnfeGx04WkAmIWjYNkyBGhRObfCBPPetFYrSIJD4ZFOInQAzdjbaiA13ZqNu_rRr93uRMh-O4zLltXggxlXN1hnzCwcbQd8</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Farb Benson</creator><creator>Kisin, Mark</creator><creator>Wolfson, Jesse</creator><general>Springer Nature B.V</general><scope/></search><sort><creationdate>20230101</creationdate><title>Modular functions and resolvent problems</title><author>Farb Benson ; Kisin, Mark ; Wolfson, Jesse</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c773-98b40182e206846829261e8fa979278da4e2be6102e7f4f9bce0881c4b4b168c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Mathematical analysis</topic><topic>Representations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Farb Benson</creatorcontrib><creatorcontrib>Kisin, Mark</creatorcontrib><creatorcontrib>Wolfson, Jesse</creatorcontrib><jtitle>Mathematische annalen</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Farb Benson</au><au>Kisin, Mark</au><au>Wolfson, Jesse</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modular functions and resolvent problems</atitle><jtitle>Mathematische annalen</jtitle><date>2023-01-01</date><risdate>2023</risdate><volume>386</volume><issue>1-2</issue><spage>113</spage><epage>150</epage><pages>113-150</pages><issn>0025-5831</issn><eissn>1432-1807</eissn><abstract>The link between modular functions and algebraic functions was a driving force behind the 19th century study of both. Examples include the solutions by Hermite and Klein of the quintic via elliptic modular functions and the general sextic via level 2 hyperelliptic functions. This paper aims to apply modern arithmetic techniques to the circle of “resolvent problems” formulated and pursued by Klein, Hilbert and others. As one example, we prove that the essential dimension at p=2 for the symmetric groups Sn is equal to the essential dimension at 2 of certain Sn-coverings defined using moduli spaces of principally polarized abelian varieties. Our proofs use the deformation theory of abelian varieties in characteristic p, specifically Serre-Tate theory, as well as a family of remarkable mod 2 symplectic Sn-representations constructed by Jordan. As shown in an appendix by Nate Harman, the properties we need for such representations exist only in the p=2 case. In the second half of this paper we introduce the notion of E-versality as a kind of generalization of Kummer theory, and we prove that many congruence covers are E-versal. We use these E-versality result to deduce the equivalence of Hilbert’s 13th Problem (and related conjectures) with problems about congruence covers.</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/s00208-022-02395-8</doi><tpages>38</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-5831
ispartof Mathematische annalen, 2023-01, Vol.386 (1-2), p.113-150
issn 0025-5831
1432-1807
language eng
recordid cdi_proquest_journals_2810188453
source SpringerLink Journals
subjects Mathematical analysis
Representations
title Modular functions and resolvent problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T09%3A27%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modular%20functions%20and%20resolvent%20problems&rft.jtitle=Mathematische%20annalen&rft.au=Farb%20Benson&rft.date=2023-01-01&rft.volume=386&rft.issue=1-2&rft.spage=113&rft.epage=150&rft.pages=113-150&rft.issn=0025-5831&rft.eissn=1432-1807&rft_id=info:doi/10.1007/s00208-022-02395-8&rft_dat=%3Cproquest%3E2810188453%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2810188453&rft_id=info:pmid/&rfr_iscdi=true