Thermal Conductivity Prediction of Metal Matrix Particulate Composites: Theoretical Methodology and Application

To make more accurate predictions of the effective thermal conductivity (ETC) of the composites, a systematic method for predicting the effective thermal conductivity of metal matrix particle composites with arbitrarily shaped particles was proposed, and the geometry of random particles with control...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of thermophysics 2023-06, Vol.44 (6), Article 94
Hauptverfasser: Chen, Zhen, Wang, Fazhan, Yu, Wenbo, Wang, Yixuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page
container_title International journal of thermophysics
container_volume 44
creator Chen, Zhen
Wang, Fazhan
Yu, Wenbo
Wang, Yixuan
description To make more accurate predictions of the effective thermal conductivity (ETC) of the composites, a systematic method for predicting the effective thermal conductivity of metal matrix particle composites with arbitrarily shaped particles was proposed, and the geometry of random particles with controlled shape characteristics is reconstructed. In addition, the geometric vertices of the reconstructed particles are used to characterize the morphology of inclusions with complex profile in two-dimensional isotropic elasticity, and its explicit expression for the Eshelby tensor are explored. Moreover, the material mismatch between the particles and the matrix phase is simulate using a continuously distributed source field based on the Eshelby's equivalent inclusion method. The relationship between micro-structure and effective performance is established. Finally, the effective thermal conductivity of CuCr alloys was predicted using the ETC prediction model. Through the comparison of the numerical simulations, experiments, and calculations, the results show that the ETC model has reliable predictive capability.
doi_str_mv 10.1007/s10765-023-03204-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2810188093</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2810188093</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-777dc4c947f2e03d7164f87f85110e646813a21457c207d8ccbd31671b7bb4b03</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMoOKd_wKuA19WTjzapd2P4BRvuYoJ3oU3TraNrapKK-_emTvDOq8PhPO974EHomsAtARB3noDI0gQoS4BR4Ak7QROSCprkaSZO0QRIniY5le_n6ML7HQDkImcTZNdb4_ZFi-e2qwYdms8mHPDKmaqJi-2wrfHShAgsi-CaL7wqXGj00BbBxMy-t74Jxt_j2GOdiacRNWFrK9vazQEXXYVnfd_Gw9h3ic7qovXm6ndO0dvjw3r-nCxen17ms0WiGeEhEUJUmuuci5oaYJUgGa-lqGVKCJiMZ5KwghKeCk1BVFLrsmIkE6QUZclLYFN0c-ztnf0YjA9qZwfXxZeKSgJESshZpOiR0s5670ytetfsC3dQBNQoVh3FqihW_YhVY4gdQz7C3ca4v-p_Ut-RUHxu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2810188093</pqid></control><display><type>article</type><title>Thermal Conductivity Prediction of Metal Matrix Particulate Composites: Theoretical Methodology and Application</title><source>Springer Nature - Complete Springer Journals</source><creator>Chen, Zhen ; Wang, Fazhan ; Yu, Wenbo ; Wang, Yixuan</creator><creatorcontrib>Chen, Zhen ; Wang, Fazhan ; Yu, Wenbo ; Wang, Yixuan</creatorcontrib><description>To make more accurate predictions of the effective thermal conductivity (ETC) of the composites, a systematic method for predicting the effective thermal conductivity of metal matrix particle composites with arbitrarily shaped particles was proposed, and the geometry of random particles with controlled shape characteristics is reconstructed. In addition, the geometric vertices of the reconstructed particles are used to characterize the morphology of inclusions with complex profile in two-dimensional isotropic elasticity, and its explicit expression for the Eshelby tensor are explored. Moreover, the material mismatch between the particles and the matrix phase is simulate using a continuously distributed source field based on the Eshelby's equivalent inclusion method. The relationship between micro-structure and effective performance is established. Finally, the effective thermal conductivity of CuCr alloys was predicted using the ETC prediction model. Through the comparison of the numerical simulations, experiments, and calculations, the results show that the ETC model has reliable predictive capability.</description><identifier>ISSN: 0195-928X</identifier><identifier>EISSN: 1572-9567</identifier><identifier>DOI: 10.1007/s10765-023-03204-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Apexes ; Classical Mechanics ; Condensed Matter Physics ; Copper base alloys ; Geophysics ; Heat conductivity ; Heat transfer ; Inclusions ; Industrial Chemistry/Chemical Engineering ; Mathematical models ; Mathematical morphology ; Particulate composites ; Physical Chemistry ; Physics ; Physics and Astronomy ; Prediction models ; Predictions ; Tensors ; Thermal conductivity ; Thermodynamics</subject><ispartof>International journal of thermophysics, 2023-06, Vol.44 (6), Article 94</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-777dc4c947f2e03d7164f87f85110e646813a21457c207d8ccbd31671b7bb4b03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10765-023-03204-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10765-023-03204-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Chen, Zhen</creatorcontrib><creatorcontrib>Wang, Fazhan</creatorcontrib><creatorcontrib>Yu, Wenbo</creatorcontrib><creatorcontrib>Wang, Yixuan</creatorcontrib><title>Thermal Conductivity Prediction of Metal Matrix Particulate Composites: Theoretical Methodology and Application</title><title>International journal of thermophysics</title><addtitle>Int J Thermophys</addtitle><description>To make more accurate predictions of the effective thermal conductivity (ETC) of the composites, a systematic method for predicting the effective thermal conductivity of metal matrix particle composites with arbitrarily shaped particles was proposed, and the geometry of random particles with controlled shape characteristics is reconstructed. In addition, the geometric vertices of the reconstructed particles are used to characterize the morphology of inclusions with complex profile in two-dimensional isotropic elasticity, and its explicit expression for the Eshelby tensor are explored. Moreover, the material mismatch between the particles and the matrix phase is simulate using a continuously distributed source field based on the Eshelby's equivalent inclusion method. The relationship between micro-structure and effective performance is established. Finally, the effective thermal conductivity of CuCr alloys was predicted using the ETC prediction model. Through the comparison of the numerical simulations, experiments, and calculations, the results show that the ETC model has reliable predictive capability.</description><subject>Apexes</subject><subject>Classical Mechanics</subject><subject>Condensed Matter Physics</subject><subject>Copper base alloys</subject><subject>Geophysics</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Inclusions</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Mathematical models</subject><subject>Mathematical morphology</subject><subject>Particulate composites</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Prediction models</subject><subject>Predictions</subject><subject>Tensors</subject><subject>Thermal conductivity</subject><subject>Thermodynamics</subject><issn>0195-928X</issn><issn>1572-9567</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kF1LwzAUhoMoOKd_wKuA19WTjzapd2P4BRvuYoJ3oU3TraNrapKK-_emTvDOq8PhPO974EHomsAtARB3noDI0gQoS4BR4Ak7QROSCprkaSZO0QRIniY5le_n6ML7HQDkImcTZNdb4_ZFi-e2qwYdms8mHPDKmaqJi-2wrfHShAgsi-CaL7wqXGj00BbBxMy-t74Jxt_j2GOdiacRNWFrK9vazQEXXYVnfd_Gw9h3ic7qovXm6ndO0dvjw3r-nCxen17ms0WiGeEhEUJUmuuci5oaYJUgGa-lqGVKCJiMZ5KwghKeCk1BVFLrsmIkE6QUZclLYFN0c-ztnf0YjA9qZwfXxZeKSgJESshZpOiR0s5670ytetfsC3dQBNQoVh3FqihW_YhVY4gdQz7C3ca4v-p_Ut-RUHxu</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Chen, Zhen</creator><creator>Wang, Fazhan</creator><creator>Yu, Wenbo</creator><creator>Wang, Yixuan</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230601</creationdate><title>Thermal Conductivity Prediction of Metal Matrix Particulate Composites: Theoretical Methodology and Application</title><author>Chen, Zhen ; Wang, Fazhan ; Yu, Wenbo ; Wang, Yixuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-777dc4c947f2e03d7164f87f85110e646813a21457c207d8ccbd31671b7bb4b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Apexes</topic><topic>Classical Mechanics</topic><topic>Condensed Matter Physics</topic><topic>Copper base alloys</topic><topic>Geophysics</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Inclusions</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Mathematical models</topic><topic>Mathematical morphology</topic><topic>Particulate composites</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Prediction models</topic><topic>Predictions</topic><topic>Tensors</topic><topic>Thermal conductivity</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Zhen</creatorcontrib><creatorcontrib>Wang, Fazhan</creatorcontrib><creatorcontrib>Yu, Wenbo</creatorcontrib><creatorcontrib>Wang, Yixuan</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of thermophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Zhen</au><au>Wang, Fazhan</au><au>Yu, Wenbo</au><au>Wang, Yixuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal Conductivity Prediction of Metal Matrix Particulate Composites: Theoretical Methodology and Application</atitle><jtitle>International journal of thermophysics</jtitle><stitle>Int J Thermophys</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>44</volume><issue>6</issue><artnum>94</artnum><issn>0195-928X</issn><eissn>1572-9567</eissn><abstract>To make more accurate predictions of the effective thermal conductivity (ETC) of the composites, a systematic method for predicting the effective thermal conductivity of metal matrix particle composites with arbitrarily shaped particles was proposed, and the geometry of random particles with controlled shape characteristics is reconstructed. In addition, the geometric vertices of the reconstructed particles are used to characterize the morphology of inclusions with complex profile in two-dimensional isotropic elasticity, and its explicit expression for the Eshelby tensor are explored. Moreover, the material mismatch between the particles and the matrix phase is simulate using a continuously distributed source field based on the Eshelby's equivalent inclusion method. The relationship between micro-structure and effective performance is established. Finally, the effective thermal conductivity of CuCr alloys was predicted using the ETC prediction model. Through the comparison of the numerical simulations, experiments, and calculations, the results show that the ETC model has reliable predictive capability.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10765-023-03204-3</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0195-928X
ispartof International journal of thermophysics, 2023-06, Vol.44 (6), Article 94
issn 0195-928X
1572-9567
language eng
recordid cdi_proquest_journals_2810188093
source Springer Nature - Complete Springer Journals
subjects Apexes
Classical Mechanics
Condensed Matter Physics
Copper base alloys
Geophysics
Heat conductivity
Heat transfer
Inclusions
Industrial Chemistry/Chemical Engineering
Mathematical models
Mathematical morphology
Particulate composites
Physical Chemistry
Physics
Physics and Astronomy
Prediction models
Predictions
Tensors
Thermal conductivity
Thermodynamics
title Thermal Conductivity Prediction of Metal Matrix Particulate Composites: Theoretical Methodology and Application
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T00%3A34%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20Conductivity%20Prediction%20of%20Metal%20Matrix%20Particulate%20Composites:%20Theoretical%20Methodology%20and%20Application&rft.jtitle=International%20journal%20of%20thermophysics&rft.au=Chen,%20Zhen&rft.date=2023-06-01&rft.volume=44&rft.issue=6&rft.artnum=94&rft.issn=0195-928X&rft.eissn=1572-9567&rft_id=info:doi/10.1007/s10765-023-03204-3&rft_dat=%3Cproquest_cross%3E2810188093%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2810188093&rft_id=info:pmid/&rfr_iscdi=true