Thermal Conductivity Prediction of Metal Matrix Particulate Composites: Theoretical Methodology and Application
To make more accurate predictions of the effective thermal conductivity (ETC) of the composites, a systematic method for predicting the effective thermal conductivity of metal matrix particle composites with arbitrarily shaped particles was proposed, and the geometry of random particles with control...
Gespeichert in:
Veröffentlicht in: | International journal of thermophysics 2023-06, Vol.44 (6), Article 94 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | |
container_title | International journal of thermophysics |
container_volume | 44 |
creator | Chen, Zhen Wang, Fazhan Yu, Wenbo Wang, Yixuan |
description | To make more accurate predictions of the effective thermal conductivity (ETC) of the composites, a systematic method for predicting the effective thermal conductivity of metal matrix particle composites with arbitrarily shaped particles was proposed, and the geometry of random particles with controlled shape characteristics is reconstructed. In addition, the geometric vertices of the reconstructed particles are used to characterize the morphology of inclusions with complex profile in two-dimensional isotropic elasticity, and its explicit expression for the Eshelby tensor are explored. Moreover, the material mismatch between the particles and the matrix phase is simulate using a continuously distributed source field based on the Eshelby's equivalent inclusion method. The relationship between micro-structure and effective performance is established. Finally, the effective thermal conductivity of CuCr alloys was predicted using the ETC prediction model. Through the comparison of the numerical simulations, experiments, and calculations, the results show that the ETC model has reliable predictive capability. |
doi_str_mv | 10.1007/s10765-023-03204-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2810188093</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2810188093</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-777dc4c947f2e03d7164f87f85110e646813a21457c207d8ccbd31671b7bb4b03</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMoOKd_wKuA19WTjzapd2P4BRvuYoJ3oU3TraNrapKK-_emTvDOq8PhPO974EHomsAtARB3noDI0gQoS4BR4Ak7QROSCprkaSZO0QRIniY5le_n6ML7HQDkImcTZNdb4_ZFi-e2qwYdms8mHPDKmaqJi-2wrfHShAgsi-CaL7wqXGj00BbBxMy-t74Jxt_j2GOdiacRNWFrK9vazQEXXYVnfd_Gw9h3ic7qovXm6ndO0dvjw3r-nCxen17ms0WiGeEhEUJUmuuci5oaYJUgGa-lqGVKCJiMZ5KwghKeCk1BVFLrsmIkE6QUZclLYFN0c-ztnf0YjA9qZwfXxZeKSgJESshZpOiR0s5670ytetfsC3dQBNQoVh3FqihW_YhVY4gdQz7C3ca4v-p_Ut-RUHxu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2810188093</pqid></control><display><type>article</type><title>Thermal Conductivity Prediction of Metal Matrix Particulate Composites: Theoretical Methodology and Application</title><source>Springer Nature - Complete Springer Journals</source><creator>Chen, Zhen ; Wang, Fazhan ; Yu, Wenbo ; Wang, Yixuan</creator><creatorcontrib>Chen, Zhen ; Wang, Fazhan ; Yu, Wenbo ; Wang, Yixuan</creatorcontrib><description>To make more accurate predictions of the effective thermal conductivity (ETC) of the composites, a systematic method for predicting the effective thermal conductivity of metal matrix particle composites with arbitrarily shaped particles was proposed, and the geometry of random particles with controlled shape characteristics is reconstructed. In addition, the geometric vertices of the reconstructed particles are used to characterize the morphology of inclusions with complex profile in two-dimensional isotropic elasticity, and its explicit expression for the Eshelby tensor are explored. Moreover, the material mismatch between the particles and the matrix phase is simulate using a continuously distributed source field based on the Eshelby's equivalent inclusion method. The relationship between micro-structure and effective performance is established. Finally, the effective thermal conductivity of CuCr alloys was predicted using the ETC prediction model. Through the comparison of the numerical simulations, experiments, and calculations, the results show that the ETC model has reliable predictive capability.</description><identifier>ISSN: 0195-928X</identifier><identifier>EISSN: 1572-9567</identifier><identifier>DOI: 10.1007/s10765-023-03204-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Apexes ; Classical Mechanics ; Condensed Matter Physics ; Copper base alloys ; Geophysics ; Heat conductivity ; Heat transfer ; Inclusions ; Industrial Chemistry/Chemical Engineering ; Mathematical models ; Mathematical morphology ; Particulate composites ; Physical Chemistry ; Physics ; Physics and Astronomy ; Prediction models ; Predictions ; Tensors ; Thermal conductivity ; Thermodynamics</subject><ispartof>International journal of thermophysics, 2023-06, Vol.44 (6), Article 94</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-777dc4c947f2e03d7164f87f85110e646813a21457c207d8ccbd31671b7bb4b03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10765-023-03204-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10765-023-03204-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Chen, Zhen</creatorcontrib><creatorcontrib>Wang, Fazhan</creatorcontrib><creatorcontrib>Yu, Wenbo</creatorcontrib><creatorcontrib>Wang, Yixuan</creatorcontrib><title>Thermal Conductivity Prediction of Metal Matrix Particulate Composites: Theoretical Methodology and Application</title><title>International journal of thermophysics</title><addtitle>Int J Thermophys</addtitle><description>To make more accurate predictions of the effective thermal conductivity (ETC) of the composites, a systematic method for predicting the effective thermal conductivity of metal matrix particle composites with arbitrarily shaped particles was proposed, and the geometry of random particles with controlled shape characteristics is reconstructed. In addition, the geometric vertices of the reconstructed particles are used to characterize the morphology of inclusions with complex profile in two-dimensional isotropic elasticity, and its explicit expression for the Eshelby tensor are explored. Moreover, the material mismatch between the particles and the matrix phase is simulate using a continuously distributed source field based on the Eshelby's equivalent inclusion method. The relationship between micro-structure and effective performance is established. Finally, the effective thermal conductivity of CuCr alloys was predicted using the ETC prediction model. Through the comparison of the numerical simulations, experiments, and calculations, the results show that the ETC model has reliable predictive capability.</description><subject>Apexes</subject><subject>Classical Mechanics</subject><subject>Condensed Matter Physics</subject><subject>Copper base alloys</subject><subject>Geophysics</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Inclusions</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Mathematical models</subject><subject>Mathematical morphology</subject><subject>Particulate composites</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Prediction models</subject><subject>Predictions</subject><subject>Tensors</subject><subject>Thermal conductivity</subject><subject>Thermodynamics</subject><issn>0195-928X</issn><issn>1572-9567</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kF1LwzAUhoMoOKd_wKuA19WTjzapd2P4BRvuYoJ3oU3TraNrapKK-_emTvDOq8PhPO974EHomsAtARB3noDI0gQoS4BR4Ak7QROSCprkaSZO0QRIniY5le_n6ML7HQDkImcTZNdb4_ZFi-e2qwYdms8mHPDKmaqJi-2wrfHShAgsi-CaL7wqXGj00BbBxMy-t74Jxt_j2GOdiacRNWFrK9vazQEXXYVnfd_Gw9h3ic7qovXm6ndO0dvjw3r-nCxen17ms0WiGeEhEUJUmuuci5oaYJUgGa-lqGVKCJiMZ5KwghKeCk1BVFLrsmIkE6QUZclLYFN0c-ztnf0YjA9qZwfXxZeKSgJESshZpOiR0s5670ytetfsC3dQBNQoVh3FqihW_YhVY4gdQz7C3ca4v-p_Ut-RUHxu</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Chen, Zhen</creator><creator>Wang, Fazhan</creator><creator>Yu, Wenbo</creator><creator>Wang, Yixuan</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230601</creationdate><title>Thermal Conductivity Prediction of Metal Matrix Particulate Composites: Theoretical Methodology and Application</title><author>Chen, Zhen ; Wang, Fazhan ; Yu, Wenbo ; Wang, Yixuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-777dc4c947f2e03d7164f87f85110e646813a21457c207d8ccbd31671b7bb4b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Apexes</topic><topic>Classical Mechanics</topic><topic>Condensed Matter Physics</topic><topic>Copper base alloys</topic><topic>Geophysics</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Inclusions</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Mathematical models</topic><topic>Mathematical morphology</topic><topic>Particulate composites</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Prediction models</topic><topic>Predictions</topic><topic>Tensors</topic><topic>Thermal conductivity</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Zhen</creatorcontrib><creatorcontrib>Wang, Fazhan</creatorcontrib><creatorcontrib>Yu, Wenbo</creatorcontrib><creatorcontrib>Wang, Yixuan</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of thermophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Zhen</au><au>Wang, Fazhan</au><au>Yu, Wenbo</au><au>Wang, Yixuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal Conductivity Prediction of Metal Matrix Particulate Composites: Theoretical Methodology and Application</atitle><jtitle>International journal of thermophysics</jtitle><stitle>Int J Thermophys</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>44</volume><issue>6</issue><artnum>94</artnum><issn>0195-928X</issn><eissn>1572-9567</eissn><abstract>To make more accurate predictions of the effective thermal conductivity (ETC) of the composites, a systematic method for predicting the effective thermal conductivity of metal matrix particle composites with arbitrarily shaped particles was proposed, and the geometry of random particles with controlled shape characteristics is reconstructed. In addition, the geometric vertices of the reconstructed particles are used to characterize the morphology of inclusions with complex profile in two-dimensional isotropic elasticity, and its explicit expression for the Eshelby tensor are explored. Moreover, the material mismatch between the particles and the matrix phase is simulate using a continuously distributed source field based on the Eshelby's equivalent inclusion method. The relationship between micro-structure and effective performance is established. Finally, the effective thermal conductivity of CuCr alloys was predicted using the ETC prediction model. Through the comparison of the numerical simulations, experiments, and calculations, the results show that the ETC model has reliable predictive capability.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10765-023-03204-3</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0195-928X |
ispartof | International journal of thermophysics, 2023-06, Vol.44 (6), Article 94 |
issn | 0195-928X 1572-9567 |
language | eng |
recordid | cdi_proquest_journals_2810188093 |
source | Springer Nature - Complete Springer Journals |
subjects | Apexes Classical Mechanics Condensed Matter Physics Copper base alloys Geophysics Heat conductivity Heat transfer Inclusions Industrial Chemistry/Chemical Engineering Mathematical models Mathematical morphology Particulate composites Physical Chemistry Physics Physics and Astronomy Prediction models Predictions Tensors Thermal conductivity Thermodynamics |
title | Thermal Conductivity Prediction of Metal Matrix Particulate Composites: Theoretical Methodology and Application |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T00%3A34%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20Conductivity%20Prediction%20of%20Metal%20Matrix%20Particulate%20Composites:%20Theoretical%20Methodology%20and%20Application&rft.jtitle=International%20journal%20of%20thermophysics&rft.au=Chen,%20Zhen&rft.date=2023-06-01&rft.volume=44&rft.issue=6&rft.artnum=94&rft.issn=0195-928X&rft.eissn=1572-9567&rft_id=info:doi/10.1007/s10765-023-03204-3&rft_dat=%3Cproquest_cross%3E2810188093%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2810188093&rft_id=info:pmid/&rfr_iscdi=true |