Optimal Energy Growth in Stably Stratified Turbulent Couette Flow
Optimal disturbances of a turbulent stably stratified plane Couette flow in a wide range of Reynolds and Richardson numbers are studied. These disturbances are computed based on a simplified system of equations in which turbulent Reynolds stresses and heat fluxes are approximated by isotropic viscos...
Gespeichert in:
Veröffentlicht in: | Boundary-layer meteorology 2023-05, Vol.187 (1-2), p.395-421 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 421 |
---|---|
container_issue | 1-2 |
container_start_page | 395 |
container_title | Boundary-layer meteorology |
container_volume | 187 |
creator | Zasko, Grigory V. Glazunov, Andrey V. Mortikov, Evgeny V. Nechepurenko, Yuri M. Perezhogin, Pavel A. |
description | Optimal disturbances of a turbulent stably stratified plane Couette flow in a wide range of Reynolds and Richardson numbers are studied. These disturbances are computed based on a simplified system of equations in which turbulent Reynolds stresses and heat fluxes are approximated by isotropic viscosity and diffusivity with the coefficients obtained from results of direct numerical simulation. Three types of disturbances are considered: large-scale streamwise-elongated rolls converting into streamwise streaks; large-scale vortical structures, inclined in the vertical plane, changing the inclination to the opposite in process of their evolution; near-wall rolls converting into streaks. Large-scale rolls and streaks predominate at neutral or weakly stable stratification while the inclined structures begin to dominate at moderately stable stratification. Near-wall rolls and streaks appear at any stratification and their spanwise size in wall length units does not depend on the values of Reynolds and Richardson numbers. It is shown that the development of inclined optimal disturbances is due to the coupled action of the lift-up effect and the inviscid Orr mechanism. The energetics of the optimal disturbances is discussed. It is shown that inclined optimal disturbances dissipate rapidly after reaching maximum energy amplification. |
doi_str_mv | 10.1007/s10546-022-00744-3 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2809964179</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A748288836</galeid><sourcerecordid>A748288836</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-d382649d118488d4aca89ee804bc5514388602d1e277862bf6007f2534200b533</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOC59R8Z_ZYSlsFoQfrOexHtm7ZbmqSpfTfm7qCN5nDMMP7zrw8CD1SMqOE6OdAiRQKE8ZwGoXA_ApNqNQcU6HZNZoQQhQGTsUtugthn0ZNJZmg-eYY20PRZcve-t05W3t3ip9Z22fvsSi7c2q-iG3T2jrbDr4cOtvHbOEGG6PNVp073aObpuiCffjtU_SxWm4XL_hts35dzN9wxSVEXHNgSuQ1pSAAalFUBeTWAhFlJSUVHEARVlPLtAbFykaliA2TXDBCSsn5FD2Nd4_efQ02RLN3g-_TS8OA5LkSVOdJNRtVu6Kzpu0bl_JXqWp7aCvX26ZN-7kWwACAq2Rgo6HyLgRvG3P0CYg_G0rMha0Z2ZrE1vywNZcsfDSFJO531v9l-cf1DWpzeXM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2809964179</pqid></control><display><type>article</type><title>Optimal Energy Growth in Stably Stratified Turbulent Couette Flow</title><source>SpringerNature Journals</source><creator>Zasko, Grigory V. ; Glazunov, Andrey V. ; Mortikov, Evgeny V. ; Nechepurenko, Yuri M. ; Perezhogin, Pavel A.</creator><creatorcontrib>Zasko, Grigory V. ; Glazunov, Andrey V. ; Mortikov, Evgeny V. ; Nechepurenko, Yuri M. ; Perezhogin, Pavel A.</creatorcontrib><description>Optimal disturbances of a turbulent stably stratified plane Couette flow in a wide range of Reynolds and Richardson numbers are studied. These disturbances are computed based on a simplified system of equations in which turbulent Reynolds stresses and heat fluxes are approximated by isotropic viscosity and diffusivity with the coefficients obtained from results of direct numerical simulation. Three types of disturbances are considered: large-scale streamwise-elongated rolls converting into streamwise streaks; large-scale vortical structures, inclined in the vertical plane, changing the inclination to the opposite in process of their evolution; near-wall rolls converting into streaks. Large-scale rolls and streaks predominate at neutral or weakly stable stratification while the inclined structures begin to dominate at moderately stable stratification. Near-wall rolls and streaks appear at any stratification and their spanwise size in wall length units does not depend on the values of Reynolds and Richardson numbers. It is shown that the development of inclined optimal disturbances is due to the coupled action of the lift-up effect and the inviscid Orr mechanism. The energetics of the optimal disturbances is discussed. It is shown that inclined optimal disturbances dissipate rapidly after reaching maximum energy amplification.</description><identifier>ISSN: 0006-8314</identifier><identifier>EISSN: 1573-1472</identifier><identifier>DOI: 10.1007/s10546-022-00744-3</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Atmospheric boundary layer ; Atmospheric Protection/Air Quality Control/Air Pollution ; Atmospheric Sciences ; Coefficients ; Conversion ; Couette flow ; Direct numerical simulation ; Disturbances ; Earth and Environmental Science ; Earth Sciences ; Elongated structure ; Energy ; Heat flux ; Heat transfer ; Mathematical models ; Meteorology ; Numerical analysis ; Numerical simulations ; Research Article ; Reynolds number ; Reynolds stresses ; Rolls ; Simulation ; Simulation methods ; Stratification ; Turbulent flow ; Velocity ; Viscosity ; Vortices</subject><ispartof>Boundary-layer meteorology, 2023-05, Vol.187 (1-2), p.395-421</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-d382649d118488d4aca89ee804bc5514388602d1e277862bf6007f2534200b533</citedby><cites>FETCH-LOGICAL-c358t-d382649d118488d4aca89ee804bc5514388602d1e277862bf6007f2534200b533</cites><orcidid>0000-0001-8670-5105</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10546-022-00744-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10546-022-00744-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Zasko, Grigory V.</creatorcontrib><creatorcontrib>Glazunov, Andrey V.</creatorcontrib><creatorcontrib>Mortikov, Evgeny V.</creatorcontrib><creatorcontrib>Nechepurenko, Yuri M.</creatorcontrib><creatorcontrib>Perezhogin, Pavel A.</creatorcontrib><title>Optimal Energy Growth in Stably Stratified Turbulent Couette Flow</title><title>Boundary-layer meteorology</title><addtitle>Boundary-Layer Meteorol</addtitle><description>Optimal disturbances of a turbulent stably stratified plane Couette flow in a wide range of Reynolds and Richardson numbers are studied. These disturbances are computed based on a simplified system of equations in which turbulent Reynolds stresses and heat fluxes are approximated by isotropic viscosity and diffusivity with the coefficients obtained from results of direct numerical simulation. Three types of disturbances are considered: large-scale streamwise-elongated rolls converting into streamwise streaks; large-scale vortical structures, inclined in the vertical plane, changing the inclination to the opposite in process of their evolution; near-wall rolls converting into streaks. Large-scale rolls and streaks predominate at neutral or weakly stable stratification while the inclined structures begin to dominate at moderately stable stratification. Near-wall rolls and streaks appear at any stratification and their spanwise size in wall length units does not depend on the values of Reynolds and Richardson numbers. It is shown that the development of inclined optimal disturbances is due to the coupled action of the lift-up effect and the inviscid Orr mechanism. The energetics of the optimal disturbances is discussed. It is shown that inclined optimal disturbances dissipate rapidly after reaching maximum energy amplification.</description><subject>Atmospheric boundary layer</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Atmospheric Sciences</subject><subject>Coefficients</subject><subject>Conversion</subject><subject>Couette flow</subject><subject>Direct numerical simulation</subject><subject>Disturbances</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Elongated structure</subject><subject>Energy</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Mathematical models</subject><subject>Meteorology</subject><subject>Numerical analysis</subject><subject>Numerical simulations</subject><subject>Research Article</subject><subject>Reynolds number</subject><subject>Reynolds stresses</subject><subject>Rolls</subject><subject>Simulation</subject><subject>Simulation methods</subject><subject>Stratification</subject><subject>Turbulent flow</subject><subject>Velocity</subject><subject>Viscosity</subject><subject>Vortices</subject><issn>0006-8314</issn><issn>1573-1472</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wNOC59R8Z_ZYSlsFoQfrOexHtm7ZbmqSpfTfm7qCN5nDMMP7zrw8CD1SMqOE6OdAiRQKE8ZwGoXA_ApNqNQcU6HZNZoQQhQGTsUtugthn0ZNJZmg-eYY20PRZcve-t05W3t3ip9Z22fvsSi7c2q-iG3T2jrbDr4cOtvHbOEGG6PNVp073aObpuiCffjtU_SxWm4XL_hts35dzN9wxSVEXHNgSuQ1pSAAalFUBeTWAhFlJSUVHEARVlPLtAbFykaliA2TXDBCSsn5FD2Nd4_efQ02RLN3g-_TS8OA5LkSVOdJNRtVu6Kzpu0bl_JXqWp7aCvX26ZN-7kWwACAq2Rgo6HyLgRvG3P0CYg_G0rMha0Z2ZrE1vywNZcsfDSFJO531v9l-cf1DWpzeXM</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Zasko, Grigory V.</creator><creator>Glazunov, Andrey V.</creator><creator>Mortikov, Evgeny V.</creator><creator>Nechepurenko, Yuri M.</creator><creator>Perezhogin, Pavel A.</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-8670-5105</orcidid></search><sort><creationdate>20230501</creationdate><title>Optimal Energy Growth in Stably Stratified Turbulent Couette Flow</title><author>Zasko, Grigory V. ; Glazunov, Andrey V. ; Mortikov, Evgeny V. ; Nechepurenko, Yuri M. ; Perezhogin, Pavel A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-d382649d118488d4aca89ee804bc5514388602d1e277862bf6007f2534200b533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Atmospheric boundary layer</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Atmospheric Sciences</topic><topic>Coefficients</topic><topic>Conversion</topic><topic>Couette flow</topic><topic>Direct numerical simulation</topic><topic>Disturbances</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Elongated structure</topic><topic>Energy</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Mathematical models</topic><topic>Meteorology</topic><topic>Numerical analysis</topic><topic>Numerical simulations</topic><topic>Research Article</topic><topic>Reynolds number</topic><topic>Reynolds stresses</topic><topic>Rolls</topic><topic>Simulation</topic><topic>Simulation methods</topic><topic>Stratification</topic><topic>Turbulent flow</topic><topic>Velocity</topic><topic>Viscosity</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zasko, Grigory V.</creatorcontrib><creatorcontrib>Glazunov, Andrey V.</creatorcontrib><creatorcontrib>Mortikov, Evgeny V.</creatorcontrib><creatorcontrib>Nechepurenko, Yuri M.</creatorcontrib><creatorcontrib>Perezhogin, Pavel A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Boundary-layer meteorology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zasko, Grigory V.</au><au>Glazunov, Andrey V.</au><au>Mortikov, Evgeny V.</au><au>Nechepurenko, Yuri M.</au><au>Perezhogin, Pavel A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Energy Growth in Stably Stratified Turbulent Couette Flow</atitle><jtitle>Boundary-layer meteorology</jtitle><stitle>Boundary-Layer Meteorol</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>187</volume><issue>1-2</issue><spage>395</spage><epage>421</epage><pages>395-421</pages><issn>0006-8314</issn><eissn>1573-1472</eissn><abstract>Optimal disturbances of a turbulent stably stratified plane Couette flow in a wide range of Reynolds and Richardson numbers are studied. These disturbances are computed based on a simplified system of equations in which turbulent Reynolds stresses and heat fluxes are approximated by isotropic viscosity and diffusivity with the coefficients obtained from results of direct numerical simulation. Three types of disturbances are considered: large-scale streamwise-elongated rolls converting into streamwise streaks; large-scale vortical structures, inclined in the vertical plane, changing the inclination to the opposite in process of their evolution; near-wall rolls converting into streaks. Large-scale rolls and streaks predominate at neutral or weakly stable stratification while the inclined structures begin to dominate at moderately stable stratification. Near-wall rolls and streaks appear at any stratification and their spanwise size in wall length units does not depend on the values of Reynolds and Richardson numbers. It is shown that the development of inclined optimal disturbances is due to the coupled action of the lift-up effect and the inviscid Orr mechanism. The energetics of the optimal disturbances is discussed. It is shown that inclined optimal disturbances dissipate rapidly after reaching maximum energy amplification.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10546-022-00744-3</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0001-8670-5105</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-8314 |
ispartof | Boundary-layer meteorology, 2023-05, Vol.187 (1-2), p.395-421 |
issn | 0006-8314 1573-1472 |
language | eng |
recordid | cdi_proquest_journals_2809964179 |
source | SpringerNature Journals |
subjects | Atmospheric boundary layer Atmospheric Protection/Air Quality Control/Air Pollution Atmospheric Sciences Coefficients Conversion Couette flow Direct numerical simulation Disturbances Earth and Environmental Science Earth Sciences Elongated structure Energy Heat flux Heat transfer Mathematical models Meteorology Numerical analysis Numerical simulations Research Article Reynolds number Reynolds stresses Rolls Simulation Simulation methods Stratification Turbulent flow Velocity Viscosity Vortices |
title | Optimal Energy Growth in Stably Stratified Turbulent Couette Flow |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A02%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Energy%20Growth%20in%20Stably%20Stratified%20Turbulent%20Couette%20Flow&rft.jtitle=Boundary-layer%20meteorology&rft.au=Zasko,%20Grigory%20V.&rft.date=2023-05-01&rft.volume=187&rft.issue=1-2&rft.spage=395&rft.epage=421&rft.pages=395-421&rft.issn=0006-8314&rft.eissn=1573-1472&rft_id=info:doi/10.1007/s10546-022-00744-3&rft_dat=%3Cgale_proqu%3EA748288836%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2809964179&rft_id=info:pmid/&rft_galeid=A748288836&rfr_iscdi=true |