MEDIC: A Multimodal Empathy Dataset in Counseling

Although empathic interaction between counselor and client is fundamental to success in the psychotherapeutic process, there are currently few datasets to aid a computational approach to empathy understanding. In this paper, we construct a multimodal empathy dataset collected from face-to-face psych...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-05
Hauptverfasser: Zhou'an_Zhu, Li, Xin, Pan, Jicai, Xiao, Yufei, Chang, Yanan, Zheng, Feiyi, Wang, Shangfei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Zhou'an_Zhu
Li, Xin
Pan, Jicai
Xiao, Yufei
Chang, Yanan
Zheng, Feiyi
Wang, Shangfei
description Although empathic interaction between counselor and client is fundamental to success in the psychotherapeutic process, there are currently few datasets to aid a computational approach to empathy understanding. In this paper, we construct a multimodal empathy dataset collected from face-to-face psychological counseling sessions. The dataset consists of 771 video clips. We also propose three labels (i.e., expression of experience, emotional reaction, and cognitive reaction) to describe the degree of empathy between counselors and their clients. Expression of experience describes whether the client has expressed experiences that can trigger empathy, and emotional and cognitive reactions indicate the counselor's empathic reactions. As an elementary assessment of the usability of the constructed multimodal empathy dataset, an interrater reliability analysis of annotators' subjective evaluations for video clips is conducted using the intraclass correlation coefficient and Fleiss' Kappa. Results prove that our data annotation is reliable. Furthermore, we conduct empathy prediction using three typical methods, including the tensor fusion network, the sentimental words aware fusion network, and a simple concatenation model. The experimental results show that empathy can be well predicted on our dataset. Our dataset is available for research purposes.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2809963565</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2809963565</sourcerecordid><originalsourceid>FETCH-proquest_journals_28099635653</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQw9HV18XS2UnBU8C3NKcnMzU9JzFFwzS1ILMmoVHBJLEksTi1RyMxTcM4vzStOzcnMS-dhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjCwNLSzNjUzNTY-JUAQAEyjJh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2809963565</pqid></control><display><type>article</type><title>MEDIC: A Multimodal Empathy Dataset in Counseling</title><source>Freely Accessible Journals</source><creator>Zhou'an_Zhu ; Li, Xin ; Pan, Jicai ; Xiao, Yufei ; Chang, Yanan ; Zheng, Feiyi ; Wang, Shangfei</creator><creatorcontrib>Zhou'an_Zhu ; Li, Xin ; Pan, Jicai ; Xiao, Yufei ; Chang, Yanan ; Zheng, Feiyi ; Wang, Shangfei</creatorcontrib><description>Although empathic interaction between counselor and client is fundamental to success in the psychotherapeutic process, there are currently few datasets to aid a computational approach to empathy understanding. In this paper, we construct a multimodal empathy dataset collected from face-to-face psychological counseling sessions. The dataset consists of 771 video clips. We also propose three labels (i.e., expression of experience, emotional reaction, and cognitive reaction) to describe the degree of empathy between counselors and their clients. Expression of experience describes whether the client has expressed experiences that can trigger empathy, and emotional and cognitive reactions indicate the counselor's empathic reactions. As an elementary assessment of the usability of the constructed multimodal empathy dataset, an interrater reliability analysis of annotators' subjective evaluations for video clips is conducted using the intraclass correlation coefficient and Fleiss' Kappa. Results prove that our data annotation is reliable. Furthermore, we conduct empathy prediction using three typical methods, including the tensor fusion network, the sentimental words aware fusion network, and a simple concatenation model. The experimental results show that empathy can be well predicted on our dataset. Our dataset is available for research purposes.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Annotations ; Clips ; Correlation coefficients ; Datasets ; Empathy ; Reliability analysis ; Tensors</subject><ispartof>arXiv.org, 2023-05</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>782,786</link.rule.ids></links><search><creatorcontrib>Zhou'an_Zhu</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Pan, Jicai</creatorcontrib><creatorcontrib>Xiao, Yufei</creatorcontrib><creatorcontrib>Chang, Yanan</creatorcontrib><creatorcontrib>Zheng, Feiyi</creatorcontrib><creatorcontrib>Wang, Shangfei</creatorcontrib><title>MEDIC: A Multimodal Empathy Dataset in Counseling</title><title>arXiv.org</title><description>Although empathic interaction between counselor and client is fundamental to success in the psychotherapeutic process, there are currently few datasets to aid a computational approach to empathy understanding. In this paper, we construct a multimodal empathy dataset collected from face-to-face psychological counseling sessions. The dataset consists of 771 video clips. We also propose three labels (i.e., expression of experience, emotional reaction, and cognitive reaction) to describe the degree of empathy between counselors and their clients. Expression of experience describes whether the client has expressed experiences that can trigger empathy, and emotional and cognitive reactions indicate the counselor's empathic reactions. As an elementary assessment of the usability of the constructed multimodal empathy dataset, an interrater reliability analysis of annotators' subjective evaluations for video clips is conducted using the intraclass correlation coefficient and Fleiss' Kappa. Results prove that our data annotation is reliable. Furthermore, we conduct empathy prediction using three typical methods, including the tensor fusion network, the sentimental words aware fusion network, and a simple concatenation model. The experimental results show that empathy can be well predicted on our dataset. Our dataset is available for research purposes.</description><subject>Annotations</subject><subject>Clips</subject><subject>Correlation coefficients</subject><subject>Datasets</subject><subject>Empathy</subject><subject>Reliability analysis</subject><subject>Tensors</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQw9HV18XS2UnBU8C3NKcnMzU9JzFFwzS1ILMmoVHBJLEksTi1RyMxTcM4vzStOzcnMS-dhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjCwNLSzNjUzNTY-JUAQAEyjJh</recordid><startdate>20230504</startdate><enddate>20230504</enddate><creator>Zhou'an_Zhu</creator><creator>Li, Xin</creator><creator>Pan, Jicai</creator><creator>Xiao, Yufei</creator><creator>Chang, Yanan</creator><creator>Zheng, Feiyi</creator><creator>Wang, Shangfei</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230504</creationdate><title>MEDIC: A Multimodal Empathy Dataset in Counseling</title><author>Zhou'an_Zhu ; Li, Xin ; Pan, Jicai ; Xiao, Yufei ; Chang, Yanan ; Zheng, Feiyi ; Wang, Shangfei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28099635653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Annotations</topic><topic>Clips</topic><topic>Correlation coefficients</topic><topic>Datasets</topic><topic>Empathy</topic><topic>Reliability analysis</topic><topic>Tensors</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhou'an_Zhu</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Pan, Jicai</creatorcontrib><creatorcontrib>Xiao, Yufei</creatorcontrib><creatorcontrib>Chang, Yanan</creatorcontrib><creatorcontrib>Zheng, Feiyi</creatorcontrib><creatorcontrib>Wang, Shangfei</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou'an_Zhu</au><au>Li, Xin</au><au>Pan, Jicai</au><au>Xiao, Yufei</au><au>Chang, Yanan</au><au>Zheng, Feiyi</au><au>Wang, Shangfei</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>MEDIC: A Multimodal Empathy Dataset in Counseling</atitle><jtitle>arXiv.org</jtitle><date>2023-05-04</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Although empathic interaction between counselor and client is fundamental to success in the psychotherapeutic process, there are currently few datasets to aid a computational approach to empathy understanding. In this paper, we construct a multimodal empathy dataset collected from face-to-face psychological counseling sessions. The dataset consists of 771 video clips. We also propose three labels (i.e., expression of experience, emotional reaction, and cognitive reaction) to describe the degree of empathy between counselors and their clients. Expression of experience describes whether the client has expressed experiences that can trigger empathy, and emotional and cognitive reactions indicate the counselor's empathic reactions. As an elementary assessment of the usability of the constructed multimodal empathy dataset, an interrater reliability analysis of annotators' subjective evaluations for video clips is conducted using the intraclass correlation coefficient and Fleiss' Kappa. Results prove that our data annotation is reliable. Furthermore, we conduct empathy prediction using three typical methods, including the tensor fusion network, the sentimental words aware fusion network, and a simple concatenation model. The experimental results show that empathy can be well predicted on our dataset. Our dataset is available for research purposes.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2809963565
source Freely Accessible Journals
subjects Annotations
Clips
Correlation coefficients
Datasets
Empathy
Reliability analysis
Tensors
title MEDIC: A Multimodal Empathy Dataset in Counseling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T00%3A00%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=MEDIC:%20A%20Multimodal%20Empathy%20Dataset%20in%20Counseling&rft.jtitle=arXiv.org&rft.au=Zhou'an_Zhu&rft.date=2023-05-04&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2809963565%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2809963565&rft_id=info:pmid/&rfr_iscdi=true