MEDIC: A Multimodal Empathy Dataset in Counseling
Although empathic interaction between counselor and client is fundamental to success in the psychotherapeutic process, there are currently few datasets to aid a computational approach to empathy understanding. In this paper, we construct a multimodal empathy dataset collected from face-to-face psych...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-05 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Zhou'an_Zhu Li, Xin Pan, Jicai Xiao, Yufei Chang, Yanan Zheng, Feiyi Wang, Shangfei |
description | Although empathic interaction between counselor and client is fundamental to success in the psychotherapeutic process, there are currently few datasets to aid a computational approach to empathy understanding. In this paper, we construct a multimodal empathy dataset collected from face-to-face psychological counseling sessions. The dataset consists of 771 video clips. We also propose three labels (i.e., expression of experience, emotional reaction, and cognitive reaction) to describe the degree of empathy between counselors and their clients. Expression of experience describes whether the client has expressed experiences that can trigger empathy, and emotional and cognitive reactions indicate the counselor's empathic reactions. As an elementary assessment of the usability of the constructed multimodal empathy dataset, an interrater reliability analysis of annotators' subjective evaluations for video clips is conducted using the intraclass correlation coefficient and Fleiss' Kappa. Results prove that our data annotation is reliable. Furthermore, we conduct empathy prediction using three typical methods, including the tensor fusion network, the sentimental words aware fusion network, and a simple concatenation model. The experimental results show that empathy can be well predicted on our dataset. Our dataset is available for research purposes. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2809963565</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2809963565</sourcerecordid><originalsourceid>FETCH-proquest_journals_28099635653</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQw9HV18XS2UnBU8C3NKcnMzU9JzFFwzS1ILMmoVHBJLEksTi1RyMxTcM4vzStOzcnMS-dhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjCwNLSzNjUzNTY-JUAQAEyjJh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2809963565</pqid></control><display><type>article</type><title>MEDIC: A Multimodal Empathy Dataset in Counseling</title><source>Freely Accessible Journals</source><creator>Zhou'an_Zhu ; Li, Xin ; Pan, Jicai ; Xiao, Yufei ; Chang, Yanan ; Zheng, Feiyi ; Wang, Shangfei</creator><creatorcontrib>Zhou'an_Zhu ; Li, Xin ; Pan, Jicai ; Xiao, Yufei ; Chang, Yanan ; Zheng, Feiyi ; Wang, Shangfei</creatorcontrib><description>Although empathic interaction between counselor and client is fundamental to success in the psychotherapeutic process, there are currently few datasets to aid a computational approach to empathy understanding. In this paper, we construct a multimodal empathy dataset collected from face-to-face psychological counseling sessions. The dataset consists of 771 video clips. We also propose three labels (i.e., expression of experience, emotional reaction, and cognitive reaction) to describe the degree of empathy between counselors and their clients. Expression of experience describes whether the client has expressed experiences that can trigger empathy, and emotional and cognitive reactions indicate the counselor's empathic reactions. As an elementary assessment of the usability of the constructed multimodal empathy dataset, an interrater reliability analysis of annotators' subjective evaluations for video clips is conducted using the intraclass correlation coefficient and Fleiss' Kappa. Results prove that our data annotation is reliable. Furthermore, we conduct empathy prediction using three typical methods, including the tensor fusion network, the sentimental words aware fusion network, and a simple concatenation model. The experimental results show that empathy can be well predicted on our dataset. Our dataset is available for research purposes.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Annotations ; Clips ; Correlation coefficients ; Datasets ; Empathy ; Reliability analysis ; Tensors</subject><ispartof>arXiv.org, 2023-05</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>782,786</link.rule.ids></links><search><creatorcontrib>Zhou'an_Zhu</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Pan, Jicai</creatorcontrib><creatorcontrib>Xiao, Yufei</creatorcontrib><creatorcontrib>Chang, Yanan</creatorcontrib><creatorcontrib>Zheng, Feiyi</creatorcontrib><creatorcontrib>Wang, Shangfei</creatorcontrib><title>MEDIC: A Multimodal Empathy Dataset in Counseling</title><title>arXiv.org</title><description>Although empathic interaction between counselor and client is fundamental to success in the psychotherapeutic process, there are currently few datasets to aid a computational approach to empathy understanding. In this paper, we construct a multimodal empathy dataset collected from face-to-face psychological counseling sessions. The dataset consists of 771 video clips. We also propose three labels (i.e., expression of experience, emotional reaction, and cognitive reaction) to describe the degree of empathy between counselors and their clients. Expression of experience describes whether the client has expressed experiences that can trigger empathy, and emotional and cognitive reactions indicate the counselor's empathic reactions. As an elementary assessment of the usability of the constructed multimodal empathy dataset, an interrater reliability analysis of annotators' subjective evaluations for video clips is conducted using the intraclass correlation coefficient and Fleiss' Kappa. Results prove that our data annotation is reliable. Furthermore, we conduct empathy prediction using three typical methods, including the tensor fusion network, the sentimental words aware fusion network, and a simple concatenation model. The experimental results show that empathy can be well predicted on our dataset. Our dataset is available for research purposes.</description><subject>Annotations</subject><subject>Clips</subject><subject>Correlation coefficients</subject><subject>Datasets</subject><subject>Empathy</subject><subject>Reliability analysis</subject><subject>Tensors</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQw9HV18XS2UnBU8C3NKcnMzU9JzFFwzS1ILMmoVHBJLEksTi1RyMxTcM4vzStOzcnMS-dhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjCwNLSzNjUzNTY-JUAQAEyjJh</recordid><startdate>20230504</startdate><enddate>20230504</enddate><creator>Zhou'an_Zhu</creator><creator>Li, Xin</creator><creator>Pan, Jicai</creator><creator>Xiao, Yufei</creator><creator>Chang, Yanan</creator><creator>Zheng, Feiyi</creator><creator>Wang, Shangfei</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230504</creationdate><title>MEDIC: A Multimodal Empathy Dataset in Counseling</title><author>Zhou'an_Zhu ; Li, Xin ; Pan, Jicai ; Xiao, Yufei ; Chang, Yanan ; Zheng, Feiyi ; Wang, Shangfei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28099635653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Annotations</topic><topic>Clips</topic><topic>Correlation coefficients</topic><topic>Datasets</topic><topic>Empathy</topic><topic>Reliability analysis</topic><topic>Tensors</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhou'an_Zhu</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Pan, Jicai</creatorcontrib><creatorcontrib>Xiao, Yufei</creatorcontrib><creatorcontrib>Chang, Yanan</creatorcontrib><creatorcontrib>Zheng, Feiyi</creatorcontrib><creatorcontrib>Wang, Shangfei</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou'an_Zhu</au><au>Li, Xin</au><au>Pan, Jicai</au><au>Xiao, Yufei</au><au>Chang, Yanan</au><au>Zheng, Feiyi</au><au>Wang, Shangfei</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>MEDIC: A Multimodal Empathy Dataset in Counseling</atitle><jtitle>arXiv.org</jtitle><date>2023-05-04</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Although empathic interaction between counselor and client is fundamental to success in the psychotherapeutic process, there are currently few datasets to aid a computational approach to empathy understanding. In this paper, we construct a multimodal empathy dataset collected from face-to-face psychological counseling sessions. The dataset consists of 771 video clips. We also propose three labels (i.e., expression of experience, emotional reaction, and cognitive reaction) to describe the degree of empathy between counselors and their clients. Expression of experience describes whether the client has expressed experiences that can trigger empathy, and emotional and cognitive reactions indicate the counselor's empathic reactions. As an elementary assessment of the usability of the constructed multimodal empathy dataset, an interrater reliability analysis of annotators' subjective evaluations for video clips is conducted using the intraclass correlation coefficient and Fleiss' Kappa. Results prove that our data annotation is reliable. Furthermore, we conduct empathy prediction using three typical methods, including the tensor fusion network, the sentimental words aware fusion network, and a simple concatenation model. The experimental results show that empathy can be well predicted on our dataset. Our dataset is available for research purposes.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2809963565 |
source | Freely Accessible Journals |
subjects | Annotations Clips Correlation coefficients Datasets Empathy Reliability analysis Tensors |
title | MEDIC: A Multimodal Empathy Dataset in Counseling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T00%3A00%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=MEDIC:%20A%20Multimodal%20Empathy%20Dataset%20in%20Counseling&rft.jtitle=arXiv.org&rft.au=Zhou'an_Zhu&rft.date=2023-05-04&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2809963565%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2809963565&rft_id=info:pmid/&rfr_iscdi=true |