Making Video Quality Assessment Models Robust to Bit Depth

We introduce a novel feature set, which we call HDRMAX features, that when included into Video Quality Assessment (VQA) algorithms designed for Standard Dynamic Range (SDR) videos, sensitizes them to distortions of High Dynamic Range (HDR) videos that are inadequately accounted for by these algorith...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters 2023-01, Vol.30, p.1-5
Hauptverfasser: Ebenezer, Joshua P., Shang, Zaixi, Wu, Yongjun, Wei, Hai, Sethuraman, Sriram, Bovik, Alan C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue
container_start_page 1
container_title IEEE signal processing letters
container_volume 30
creator Ebenezer, Joshua P.
Shang, Zaixi
Wu, Yongjun
Wei, Hai
Sethuraman, Sriram
Bovik, Alan C.
description We introduce a novel feature set, which we call HDRMAX features, that when included into Video Quality Assessment (VQA) algorithms designed for Standard Dynamic Range (SDR) videos, sensitizes them to distortions of High Dynamic Range (HDR) videos that are inadequately accounted for by these algorithms. While these features are not specific to HDR, and also augment the equality prediction performances of VQA models on SDR content, they are especially effective on HDR. HDRMAX features modify powerful priors drawn from Natural Video Statistics (NVS) models by enhancing their measurability where they visually impact the brightest and darkest local portions of videos, thereby capturing distortions that are often poorly accounted for by existing VQA models. As a demonstration of the efficacy of our approach, we show that, while current state-of-the-art VQA models perform poorly on 10-bit HDR databases, their performances are greatly improved by the inclusion of HDRMAX features when tested on HDR and 10-bit distorted videos.
doi_str_mv 10.1109/LSP.2023.3268602
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2809879586</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10105991</ieee_id><sourcerecordid>2809879586</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-e137cfd9eab554bb44a8852ef4db1daccffab88ffcd592733510a518d3f47b373</originalsourceid><addsrcrecordid>eNpNkDtPwzAUhS0EEqWwMzBYYk65tuPEZitvpFa8WS07uYaUti6xM_Tfk6odmO4ZvnOu9BFyymDEGOiLydvziAMXI8ELVQDfIwMmpcq4KNh-n6GETGtQh-QoxhkAKKbkgFxO7U-z_KKfTY2BvnR23qQ1HceIMS5wmeg01DiP9DW4LiaaAr1qEr3BVfo-JgfeziOe7O6QfNzdvl8_ZJOn-8fr8SSrhNApQybKytcarZMydy7PrVKSo89rx2pbVd5bp5T3VS01L4WQDKxkqhY-L50oxZCcb3dXbfjtMCYzC1277F8arkCrUktV9BRsqaoNMbbozaptFrZdGwZmY8j0hszGkNkZ6itn20qDiP9wBlJrJv4AmdVhjA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2809879586</pqid></control><display><type>article</type><title>Making Video Quality Assessment Models Robust to Bit Depth</title><source>IEEE Electronic Library (IEL)</source><creator>Ebenezer, Joshua P. ; Shang, Zaixi ; Wu, Yongjun ; Wei, Hai ; Sethuraman, Sriram ; Bovik, Alan C.</creator><creatorcontrib>Ebenezer, Joshua P. ; Shang, Zaixi ; Wu, Yongjun ; Wei, Hai ; Sethuraman, Sriram ; Bovik, Alan C.</creatorcontrib><description>We introduce a novel feature set, which we call HDRMAX features, that when included into Video Quality Assessment (VQA) algorithms designed for Standard Dynamic Range (SDR) videos, sensitizes them to distortions of High Dynamic Range (HDR) videos that are inadequately accounted for by these algorithms. While these features are not specific to HDR, and also augment the equality prediction performances of VQA models on SDR content, they are especially effective on HDR. HDRMAX features modify powerful priors drawn from Natural Video Statistics (NVS) models by enhancing their measurability where they visually impact the brightest and darkest local portions of videos, thereby capturing distortions that are often poorly accounted for by existing VQA models. As a demonstration of the efficacy of our approach, we show that, while current state-of-the-art VQA models perform poorly on 10-bit HDR databases, their performances are greatly improved by the inclusion of HDRMAX features when tested on HDR and 10-bit distorted videos.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2023.3268602</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Dynamic range ; Feature extraction ; High Dynamic Range ; Nonlinear distortion ; Prediction algorithms ; Predictive models ; Quality assessment ; Video ; Video Quality Assessment</subject><ispartof>IEEE signal processing letters, 2023-01, Vol.30, p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-e137cfd9eab554bb44a8852ef4db1daccffab88ffcd592733510a518d3f47b373</citedby><cites>FETCH-LOGICAL-c339t-e137cfd9eab554bb44a8852ef4db1daccffab88ffcd592733510a518d3f47b373</cites><orcidid>0000-0001-6067-710X ; 0000-0003-4936-9784 ; 0000-0002-4264-3130</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10105991$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10105991$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ebenezer, Joshua P.</creatorcontrib><creatorcontrib>Shang, Zaixi</creatorcontrib><creatorcontrib>Wu, Yongjun</creatorcontrib><creatorcontrib>Wei, Hai</creatorcontrib><creatorcontrib>Sethuraman, Sriram</creatorcontrib><creatorcontrib>Bovik, Alan C.</creatorcontrib><title>Making Video Quality Assessment Models Robust to Bit Depth</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>We introduce a novel feature set, which we call HDRMAX features, that when included into Video Quality Assessment (VQA) algorithms designed for Standard Dynamic Range (SDR) videos, sensitizes them to distortions of High Dynamic Range (HDR) videos that are inadequately accounted for by these algorithms. While these features are not specific to HDR, and also augment the equality prediction performances of VQA models on SDR content, they are especially effective on HDR. HDRMAX features modify powerful priors drawn from Natural Video Statistics (NVS) models by enhancing their measurability where they visually impact the brightest and darkest local portions of videos, thereby capturing distortions that are often poorly accounted for by existing VQA models. As a demonstration of the efficacy of our approach, we show that, while current state-of-the-art VQA models perform poorly on 10-bit HDR databases, their performances are greatly improved by the inclusion of HDRMAX features when tested on HDR and 10-bit distorted videos.</description><subject>Algorithms</subject><subject>Dynamic range</subject><subject>Feature extraction</subject><subject>High Dynamic Range</subject><subject>Nonlinear distortion</subject><subject>Prediction algorithms</subject><subject>Predictive models</subject><subject>Quality assessment</subject><subject>Video</subject><subject>Video Quality Assessment</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkDtPwzAUhS0EEqWwMzBYYk65tuPEZitvpFa8WS07uYaUti6xM_Tfk6odmO4ZvnOu9BFyymDEGOiLydvziAMXI8ELVQDfIwMmpcq4KNh-n6GETGtQh-QoxhkAKKbkgFxO7U-z_KKfTY2BvnR23qQ1HceIMS5wmeg01DiP9DW4LiaaAr1qEr3BVfo-JgfeziOe7O6QfNzdvl8_ZJOn-8fr8SSrhNApQybKytcarZMydy7PrVKSo89rx2pbVd5bp5T3VS01L4WQDKxkqhY-L50oxZCcb3dXbfjtMCYzC1277F8arkCrUktV9BRsqaoNMbbozaptFrZdGwZmY8j0hszGkNkZ6itn20qDiP9wBlJrJv4AmdVhjA</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Ebenezer, Joshua P.</creator><creator>Shang, Zaixi</creator><creator>Wu, Yongjun</creator><creator>Wei, Hai</creator><creator>Sethuraman, Sriram</creator><creator>Bovik, Alan C.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6067-710X</orcidid><orcidid>https://orcid.org/0000-0003-4936-9784</orcidid><orcidid>https://orcid.org/0000-0002-4264-3130</orcidid></search><sort><creationdate>20230101</creationdate><title>Making Video Quality Assessment Models Robust to Bit Depth</title><author>Ebenezer, Joshua P. ; Shang, Zaixi ; Wu, Yongjun ; Wei, Hai ; Sethuraman, Sriram ; Bovik, Alan C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-e137cfd9eab554bb44a8852ef4db1daccffab88ffcd592733510a518d3f47b373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Dynamic range</topic><topic>Feature extraction</topic><topic>High Dynamic Range</topic><topic>Nonlinear distortion</topic><topic>Prediction algorithms</topic><topic>Predictive models</topic><topic>Quality assessment</topic><topic>Video</topic><topic>Video Quality Assessment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ebenezer, Joshua P.</creatorcontrib><creatorcontrib>Shang, Zaixi</creatorcontrib><creatorcontrib>Wu, Yongjun</creatorcontrib><creatorcontrib>Wei, Hai</creatorcontrib><creatorcontrib>Sethuraman, Sriram</creatorcontrib><creatorcontrib>Bovik, Alan C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ebenezer, Joshua P.</au><au>Shang, Zaixi</au><au>Wu, Yongjun</au><au>Wei, Hai</au><au>Sethuraman, Sriram</au><au>Bovik, Alan C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Making Video Quality Assessment Models Robust to Bit Depth</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>30</volume><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>We introduce a novel feature set, which we call HDRMAX features, that when included into Video Quality Assessment (VQA) algorithms designed for Standard Dynamic Range (SDR) videos, sensitizes them to distortions of High Dynamic Range (HDR) videos that are inadequately accounted for by these algorithms. While these features are not specific to HDR, and also augment the equality prediction performances of VQA models on SDR content, they are especially effective on HDR. HDRMAX features modify powerful priors drawn from Natural Video Statistics (NVS) models by enhancing their measurability where they visually impact the brightest and darkest local portions of videos, thereby capturing distortions that are often poorly accounted for by existing VQA models. As a demonstration of the efficacy of our approach, we show that, while current state-of-the-art VQA models perform poorly on 10-bit HDR databases, their performances are greatly improved by the inclusion of HDRMAX features when tested on HDR and 10-bit distorted videos.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LSP.2023.3268602</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-6067-710X</orcidid><orcidid>https://orcid.org/0000-0003-4936-9784</orcidid><orcidid>https://orcid.org/0000-0002-4264-3130</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1070-9908
ispartof IEEE signal processing letters, 2023-01, Vol.30, p.1-5
issn 1070-9908
1558-2361
language eng
recordid cdi_proquest_journals_2809879586
source IEEE Electronic Library (IEL)
subjects Algorithms
Dynamic range
Feature extraction
High Dynamic Range
Nonlinear distortion
Prediction algorithms
Predictive models
Quality assessment
Video
Video Quality Assessment
title Making Video Quality Assessment Models Robust to Bit Depth
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T14%3A53%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Making%20Video%20Quality%20Assessment%20Models%20Robust%20to%20Bit%20Depth&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Ebenezer,%20Joshua%20P.&rft.date=2023-01-01&rft.volume=30&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2023.3268602&rft_dat=%3Cproquest_RIE%3E2809879586%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2809879586&rft_id=info:pmid/&rft_ieee_id=10105991&rfr_iscdi=true