Circulation and Soil Moisture Contributions to Heatwaves in the United States
Extreme heat events are a threat to human health, productivity, and food supply, so understanding their drivers is critical to adaptation and resilience. Anticyclonic circulation and certain quasi-stationary Rossby wave patterns are well known to coincide with heatwaves, and soil moisture deficits a...
Gespeichert in:
Veröffentlicht in: | Journal of climate 2022-12, Vol.35 (24), p.8031-8048 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8048 |
---|---|
container_issue | 24 |
container_start_page | 8031 |
container_title | Journal of climate |
container_volume | 35 |
creator | Horowitz, Russell L. McKinnon, Karen A. Simpson, Isla R. |
description | Extreme heat events are a threat to human health, productivity, and food supply, so understanding their drivers is critical to adaptation and resilience. Anticyclonic circulation and certain quasi-stationary Rossby wave patterns are well known to coincide with heatwaves, and soil moisture deficits amplify extreme heat in some regions. However, the relative roles of these two factors in causing heatwaves is still unclear. Here we use constructed circulation analogs to estimate the contribution of atmospheric circulation to heatwaves in the United States in the Community Earth System Model version 1 (CESM1) preindustrial control simulations. After accounting for the component of the heatwaves explained by circulation, we explore the relationship between the residual temperature anomalies and soil moisture. We find that circulation explains over 85% of heatwave temperature anomalies in the eastern and western United States but only 75%–85% in the central United States. In this region, there is a significant negative correlation between soil moisture the week before the heatwave and the strength of the heatwave that explains additional variance. Further, for the hottest central U.S. heatwaves, positive temperature anomalies and negative soil moisture anomalies are evident over a month before heatwave onset. These results provide evidence that positive land–atmosphere feedbacks may be amplifying heatwaves in the central United States and demonstrate the geographic heterogeneity in the relative importance of the land and atmosphere for heatwave development. Analysis of future circulation and soil moisture in the CESM1 Large Ensemble indicates that, over parts of the United States, both may be trending toward greater heatwave likelihood. |
doi_str_mv | 10.1175/JCLI-D-21-0156.1 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2809573955</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27275382</jstor_id><sourcerecordid>27275382</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-6438e5a66083ec37ab2acd27de43fc19d1ee2990968a907bebeab966158d266a3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQQIMoWKt3L0LAc2o-NsnmKFu1lRYP2nPI7k4xpW5qklX89-5S8TSHeW8GHkLXjM4Y0_LuuVotyZxwRiiTasZO0IRJTgktCn6KJrQ0BSm1lOfoIqUdpYwrSidoXfnY9HuXfeiw61r8Gvwer4NPuY-Aq9Dl6Ot-XCecA16Ay9_uCxL2Hc7vgDedzzBo2WVIl-hs6_YJrv7mFG0eH96qBVm9PC2r-xVpuBGZqEKUIJ1StBTQCO1q7pqW6xYKsW2YaRkAN4YaVTpDdQ01uNooxWTZcqWcmKLb491DDJ89pGx3oY_d8NLykhqphZFyoOiRamJIKcLWHqL_cPHHMmrHaHaMZueWMztGs2xQbo7KLuUQ_3muuZai5OIX-SBpSQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2809573955</pqid></control><display><type>article</type><title>Circulation and Soil Moisture Contributions to Heatwaves in the United States</title><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Horowitz, Russell L. ; McKinnon, Karen A. ; Simpson, Isla R.</creator><creatorcontrib>Horowitz, Russell L. ; McKinnon, Karen A. ; Simpson, Isla R.</creatorcontrib><description>Extreme heat events are a threat to human health, productivity, and food supply, so understanding their drivers is critical to adaptation and resilience. Anticyclonic circulation and certain quasi-stationary Rossby wave patterns are well known to coincide with heatwaves, and soil moisture deficits amplify extreme heat in some regions. However, the relative roles of these two factors in causing heatwaves is still unclear. Here we use constructed circulation analogs to estimate the contribution of atmospheric circulation to heatwaves in the United States in the Community Earth System Model version 1 (CESM1) preindustrial control simulations. After accounting for the component of the heatwaves explained by circulation, we explore the relationship between the residual temperature anomalies and soil moisture. We find that circulation explains over 85% of heatwave temperature anomalies in the eastern and western United States but only 75%–85% in the central United States. In this region, there is a significant negative correlation between soil moisture the week before the heatwave and the strength of the heatwave that explains additional variance. Further, for the hottest central U.S. heatwaves, positive temperature anomalies and negative soil moisture anomalies are evident over a month before heatwave onset. These results provide evidence that positive land–atmosphere feedbacks may be amplifying heatwaves in the central United States and demonstrate the geographic heterogeneity in the relative importance of the land and atmosphere for heatwave development. Analysis of future circulation and soil moisture in the CESM1 Large Ensemble indicates that, over parts of the United States, both may be trending toward greater heatwave likelihood.</description><identifier>ISSN: 0894-8755</identifier><identifier>EISSN: 1520-0442</identifier><identifier>DOI: 10.1175/JCLI-D-21-0156.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Amplification ; Analogs ; Anomalies ; Anticyclonic circulation ; Atmosphere ; Atmospheric circulation ; Circulation ; Climate ; Extreme heat ; Extreme high temperatures ; Food supply ; Heat ; Heat waves ; Heatwaves ; Heterogeneity ; Moisture effects ; Planetary waves ; Precipitation ; Rossby waves ; Sea level ; Simulation ; Soil ; Soil moisture ; Soil temperature ; Temperature ; Temperature anomalies ; Trends</subject><ispartof>Journal of climate, 2022-12, Vol.35 (24), p.8031-8048</ispartof><rights>2022 American Meteorological Society</rights><rights>Copyright American Meteorological Society 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-6438e5a66083ec37ab2acd27de43fc19d1ee2990968a907bebeab966158d266a3</citedby><orcidid>0000-0003-3314-8442</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3668,27901,27902</link.rule.ids></links><search><creatorcontrib>Horowitz, Russell L.</creatorcontrib><creatorcontrib>McKinnon, Karen A.</creatorcontrib><creatorcontrib>Simpson, Isla R.</creatorcontrib><title>Circulation and Soil Moisture Contributions to Heatwaves in the United States</title><title>Journal of climate</title><description>Extreme heat events are a threat to human health, productivity, and food supply, so understanding their drivers is critical to adaptation and resilience. Anticyclonic circulation and certain quasi-stationary Rossby wave patterns are well known to coincide with heatwaves, and soil moisture deficits amplify extreme heat in some regions. However, the relative roles of these two factors in causing heatwaves is still unclear. Here we use constructed circulation analogs to estimate the contribution of atmospheric circulation to heatwaves in the United States in the Community Earth System Model version 1 (CESM1) preindustrial control simulations. After accounting for the component of the heatwaves explained by circulation, we explore the relationship between the residual temperature anomalies and soil moisture. We find that circulation explains over 85% of heatwave temperature anomalies in the eastern and western United States but only 75%–85% in the central United States. In this region, there is a significant negative correlation between soil moisture the week before the heatwave and the strength of the heatwave that explains additional variance. Further, for the hottest central U.S. heatwaves, positive temperature anomalies and negative soil moisture anomalies are evident over a month before heatwave onset. These results provide evidence that positive land–atmosphere feedbacks may be amplifying heatwaves in the central United States and demonstrate the geographic heterogeneity in the relative importance of the land and atmosphere for heatwave development. Analysis of future circulation and soil moisture in the CESM1 Large Ensemble indicates that, over parts of the United States, both may be trending toward greater heatwave likelihood.</description><subject>Amplification</subject><subject>Analogs</subject><subject>Anomalies</subject><subject>Anticyclonic circulation</subject><subject>Atmosphere</subject><subject>Atmospheric circulation</subject><subject>Circulation</subject><subject>Climate</subject><subject>Extreme heat</subject><subject>Extreme high temperatures</subject><subject>Food supply</subject><subject>Heat</subject><subject>Heat waves</subject><subject>Heatwaves</subject><subject>Heterogeneity</subject><subject>Moisture effects</subject><subject>Planetary waves</subject><subject>Precipitation</subject><subject>Rossby waves</subject><subject>Sea level</subject><subject>Simulation</subject><subject>Soil</subject><subject>Soil moisture</subject><subject>Soil temperature</subject><subject>Temperature</subject><subject>Temperature anomalies</subject><subject>Trends</subject><issn>0894-8755</issn><issn>1520-0442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9kE1LAzEQQIMoWKt3L0LAc2o-NsnmKFu1lRYP2nPI7k4xpW5qklX89-5S8TSHeW8GHkLXjM4Y0_LuuVotyZxwRiiTasZO0IRJTgktCn6KJrQ0BSm1lOfoIqUdpYwrSidoXfnY9HuXfeiw61r8Gvwer4NPuY-Aq9Dl6Ot-XCecA16Ay9_uCxL2Hc7vgDedzzBo2WVIl-hs6_YJrv7mFG0eH96qBVm9PC2r-xVpuBGZqEKUIJ1StBTQCO1q7pqW6xYKsW2YaRkAN4YaVTpDdQ01uNooxWTZcqWcmKLb491DDJ89pGx3oY_d8NLykhqphZFyoOiRamJIKcLWHqL_cPHHMmrHaHaMZueWMztGs2xQbo7KLuUQ_3muuZai5OIX-SBpSQ</recordid><startdate>20221215</startdate><enddate>20221215</enddate><creator>Horowitz, Russell L.</creator><creator>McKinnon, Karen A.</creator><creator>Simpson, Isla R.</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>7X2</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M0K</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0003-3314-8442</orcidid></search><sort><creationdate>20221215</creationdate><title>Circulation and Soil Moisture Contributions to Heatwaves in the United States</title><author>Horowitz, Russell L. ; McKinnon, Karen A. ; Simpson, Isla R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-6438e5a66083ec37ab2acd27de43fc19d1ee2990968a907bebeab966158d266a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Amplification</topic><topic>Analogs</topic><topic>Anomalies</topic><topic>Anticyclonic circulation</topic><topic>Atmosphere</topic><topic>Atmospheric circulation</topic><topic>Circulation</topic><topic>Climate</topic><topic>Extreme heat</topic><topic>Extreme high temperatures</topic><topic>Food supply</topic><topic>Heat</topic><topic>Heat waves</topic><topic>Heatwaves</topic><topic>Heterogeneity</topic><topic>Moisture effects</topic><topic>Planetary waves</topic><topic>Precipitation</topic><topic>Rossby waves</topic><topic>Sea level</topic><topic>Simulation</topic><topic>Soil</topic><topic>Soil moisture</topic><topic>Soil temperature</topic><topic>Temperature</topic><topic>Temperature anomalies</topic><topic>Trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Horowitz, Russell L.</creatorcontrib><creatorcontrib>McKinnon, Karen A.</creatorcontrib><creatorcontrib>Simpson, Isla R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Agricultural Science Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of climate</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Horowitz, Russell L.</au><au>McKinnon, Karen A.</au><au>Simpson, Isla R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Circulation and Soil Moisture Contributions to Heatwaves in the United States</atitle><jtitle>Journal of climate</jtitle><date>2022-12-15</date><risdate>2022</risdate><volume>35</volume><issue>24</issue><spage>8031</spage><epage>8048</epage><pages>8031-8048</pages><issn>0894-8755</issn><eissn>1520-0442</eissn><abstract>Extreme heat events are a threat to human health, productivity, and food supply, so understanding their drivers is critical to adaptation and resilience. Anticyclonic circulation and certain quasi-stationary Rossby wave patterns are well known to coincide with heatwaves, and soil moisture deficits amplify extreme heat in some regions. However, the relative roles of these two factors in causing heatwaves is still unclear. Here we use constructed circulation analogs to estimate the contribution of atmospheric circulation to heatwaves in the United States in the Community Earth System Model version 1 (CESM1) preindustrial control simulations. After accounting for the component of the heatwaves explained by circulation, we explore the relationship between the residual temperature anomalies and soil moisture. We find that circulation explains over 85% of heatwave temperature anomalies in the eastern and western United States but only 75%–85% in the central United States. In this region, there is a significant negative correlation between soil moisture the week before the heatwave and the strength of the heatwave that explains additional variance. Further, for the hottest central U.S. heatwaves, positive temperature anomalies and negative soil moisture anomalies are evident over a month before heatwave onset. These results provide evidence that positive land–atmosphere feedbacks may be amplifying heatwaves in the central United States and demonstrate the geographic heterogeneity in the relative importance of the land and atmosphere for heatwave development. Analysis of future circulation and soil moisture in the CESM1 Large Ensemble indicates that, over parts of the United States, both may be trending toward greater heatwave likelihood.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/JCLI-D-21-0156.1</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-3314-8442</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0894-8755 |
ispartof | Journal of climate, 2022-12, Vol.35 (24), p.8031-8048 |
issn | 0894-8755 1520-0442 |
language | eng |
recordid | cdi_proquest_journals_2809573955 |
source | American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Amplification Analogs Anomalies Anticyclonic circulation Atmosphere Atmospheric circulation Circulation Climate Extreme heat Extreme high temperatures Food supply Heat Heat waves Heatwaves Heterogeneity Moisture effects Planetary waves Precipitation Rossby waves Sea level Simulation Soil Soil moisture Soil temperature Temperature Temperature anomalies Trends |
title | Circulation and Soil Moisture Contributions to Heatwaves in the United States |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T21%3A37%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Circulation%20and%20Soil%20Moisture%20Contributions%20to%20Heatwaves%20in%20the%20United%20States&rft.jtitle=Journal%20of%20climate&rft.au=Horowitz,%20Russell%20L.&rft.date=2022-12-15&rft.volume=35&rft.issue=24&rft.spage=8031&rft.epage=8048&rft.pages=8031-8048&rft.issn=0894-8755&rft.eissn=1520-0442&rft_id=info:doi/10.1175/JCLI-D-21-0156.1&rft_dat=%3Cjstor_proqu%3E27275382%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2809573955&rft_id=info:pmid/&rft_jstor_id=27275382&rfr_iscdi=true |