Some remarks on approximation in several complex variables
In Gauthier, Manolaki, and Nestoridis (2021, Advances in Mathematics 381, 107649), in order to correct a false Mergelyan-type statement given in Gamelin and Garnett (1969, Transactions of the American Mathematical Society 143, 187–200) on uniform approximation on compact sets K in $\mathbb C^d$ , th...
Gespeichert in:
Veröffentlicht in: | Canadian mathematical bulletin 2023-06, Vol.66 (2), p.643-653 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 653 |
---|---|
container_issue | 2 |
container_start_page | 643 |
container_title | Canadian mathematical bulletin |
container_volume | 66 |
creator | Falcó, Javier Gauthier, Paul M. Manolaki, Myrto Nestoridis, Vassili |
description | In Gauthier, Manolaki, and Nestoridis (2021, Advances in Mathematics 381, 107649), in order to correct a false Mergelyan-type statement given in Gamelin and Garnett (1969, Transactions of the American Mathematical Society 143, 187–200) on uniform approximation on compact sets K in
$\mathbb C^d$
, the authors introduced a natural function algebra
$A_D(K)$
which is smaller than the classical one
$A(K)$
. In the present paper, we investigate when these two algebras coincide and compare them with the classes of all plausibly approximable functions by polynomials or rational functions or functions holomorphic on open sets containing the compact set K. Finally, we introduce a notion of O-hull of K and strengthen known results. |
doi_str_mv | 10.4153/S0008439522000613 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2809456157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_4153_S0008439522000613</cupid><sourcerecordid>2809456157</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-23d33a812a3c1e6ae18465cf8d7fb302bcdfe8c198b52380af9928fdcfad39243</originalsourceid><addsrcrecordid>eNp1UEtPwzAMjhBIjMEP4FaJcyGOkzbhhiZe0iQOg3OVpg7qaNeSbNP492QaEgfEyba-h-2PsUvg1xIU3iw451qiUUKkrgA8YhOQpsil0OUxm-zhfI-fsrMYl5xDqUo1YbeLoacsUG_DR8yGVWbHMQy7trfrNk3tKou0pWC7zA392NEu29rQ2rqjeM5OvO0iXfzUKXt7uH-dPeXzl8fn2d08dwhinQtsEK0GYdEBFZZAy0I5r5vS18hF7RpP2oHRtRKoufXGCO0b522DRkicsquDbzrsc0NxXS2HTVillZXQ3EhVgCoTCw4sF4YYA_lqDOmL8FUBr_YRVX8iShr80di-Dm3zTr_W_6u-AajtZ_s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2809456157</pqid></control><display><type>article</type><title>Some remarks on approximation in several complex variables</title><source>Cambridge University Press Journals Complete</source><creator>Falcó, Javier ; Gauthier, Paul M. ; Manolaki, Myrto ; Nestoridis, Vassili</creator><creatorcontrib>Falcó, Javier ; Gauthier, Paul M. ; Manolaki, Myrto ; Nestoridis, Vassili</creatorcontrib><description>In Gauthier, Manolaki, and Nestoridis (2021, Advances in Mathematics 381, 107649), in order to correct a false Mergelyan-type statement given in Gamelin and Garnett (1969, Transactions of the American Mathematical Society 143, 187–200) on uniform approximation on compact sets K in
$\mathbb C^d$
, the authors introduced a natural function algebra
$A_D(K)$
which is smaller than the classical one
$A(K)$
. In the present paper, we investigate when these two algebras coincide and compare them with the classes of all plausibly approximable functions by polynomials or rational functions or functions holomorphic on open sets containing the compact set K. Finally, we introduce a notion of O-hull of K and strengthen known results.</description><identifier>ISSN: 0008-4395</identifier><identifier>EISSN: 1496-4287</identifier><identifier>DOI: 10.4153/S0008439522000613</identifier><language>eng</language><publisher>Canada: Canadian Mathematical Society</publisher><subject>Algebra ; Approximation ; Complex variables ; Equality ; Mathematical analysis ; Polynomials ; Rational functions</subject><ispartof>Canadian mathematical bulletin, 2023-06, Vol.66 (2), p.643-653</ispartof><rights>The Author(s), 2022. Published by Cambridge University Press on behalf of The Canadian Mathematical Society</rights><rights>The Author(s), 2022. Published by Cambridge University Press on behalf of The Canadian Mathematical Society. This work is licensed under the Creative Commons Attribution License https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c312t-23d33a812a3c1e6ae18465cf8d7fb302bcdfe8c198b52380af9928fdcfad39243</cites><orcidid>0000-0001-5435-3053</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0008439522000613/type/journal_article$$EHTML$$P50$$Gcambridge$$Hfree_for_read</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>Falcó, Javier</creatorcontrib><creatorcontrib>Gauthier, Paul M.</creatorcontrib><creatorcontrib>Manolaki, Myrto</creatorcontrib><creatorcontrib>Nestoridis, Vassili</creatorcontrib><title>Some remarks on approximation in several complex variables</title><title>Canadian mathematical bulletin</title><addtitle>Can. Math. Bull</addtitle><description>In Gauthier, Manolaki, and Nestoridis (2021, Advances in Mathematics 381, 107649), in order to correct a false Mergelyan-type statement given in Gamelin and Garnett (1969, Transactions of the American Mathematical Society 143, 187–200) on uniform approximation on compact sets K in
$\mathbb C^d$
, the authors introduced a natural function algebra
$A_D(K)$
which is smaller than the classical one
$A(K)$
. In the present paper, we investigate when these two algebras coincide and compare them with the classes of all plausibly approximable functions by polynomials or rational functions or functions holomorphic on open sets containing the compact set K. Finally, we introduce a notion of O-hull of K and strengthen known results.</description><subject>Algebra</subject><subject>Approximation</subject><subject>Complex variables</subject><subject>Equality</subject><subject>Mathematical analysis</subject><subject>Polynomials</subject><subject>Rational functions</subject><issn>0008-4395</issn><issn>1496-4287</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>IKXGN</sourceid><sourceid>BENPR</sourceid><recordid>eNp1UEtPwzAMjhBIjMEP4FaJcyGOkzbhhiZe0iQOg3OVpg7qaNeSbNP492QaEgfEyba-h-2PsUvg1xIU3iw451qiUUKkrgA8YhOQpsil0OUxm-zhfI-fsrMYl5xDqUo1YbeLoacsUG_DR8yGVWbHMQy7trfrNk3tKou0pWC7zA392NEu29rQ2rqjeM5OvO0iXfzUKXt7uH-dPeXzl8fn2d08dwhinQtsEK0GYdEBFZZAy0I5r5vS18hF7RpP2oHRtRKoufXGCO0b522DRkicsquDbzrsc0NxXS2HTVillZXQ3EhVgCoTCw4sF4YYA_lqDOmL8FUBr_YRVX8iShr80di-Dm3zTr_W_6u-AajtZ_s</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Falcó, Javier</creator><creator>Gauthier, Paul M.</creator><creator>Manolaki, Myrto</creator><creator>Nestoridis, Vassili</creator><general>Canadian Mathematical Society</general><general>Cambridge University Press</general><scope>IKXGN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FQ</scope><scope>8FV</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-5435-3053</orcidid></search><sort><creationdate>20230601</creationdate><title>Some remarks on approximation in several complex variables</title><author>Falcó, Javier ; Gauthier, Paul M. ; Manolaki, Myrto ; Nestoridis, Vassili</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-23d33a812a3c1e6ae18465cf8d7fb302bcdfe8c198b52380af9928fdcfad39243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algebra</topic><topic>Approximation</topic><topic>Complex variables</topic><topic>Equality</topic><topic>Mathematical analysis</topic><topic>Polynomials</topic><topic>Rational functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Falcó, Javier</creatorcontrib><creatorcontrib>Gauthier, Paul M.</creatorcontrib><creatorcontrib>Manolaki, Myrto</creatorcontrib><creatorcontrib>Nestoridis, Vassili</creatorcontrib><collection>Cambridge Journals Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Canadian Business & Current Affairs Database</collection><collection>Canadian Business & Current Affairs Database (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Canadian mathematical bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Falcó, Javier</au><au>Gauthier, Paul M.</au><au>Manolaki, Myrto</au><au>Nestoridis, Vassili</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some remarks on approximation in several complex variables</atitle><jtitle>Canadian mathematical bulletin</jtitle><addtitle>Can. Math. Bull</addtitle><date>2023-06-01</date><risdate>2023</risdate><volume>66</volume><issue>2</issue><spage>643</spage><epage>653</epage><pages>643-653</pages><issn>0008-4395</issn><eissn>1496-4287</eissn><abstract>In Gauthier, Manolaki, and Nestoridis (2021, Advances in Mathematics 381, 107649), in order to correct a false Mergelyan-type statement given in Gamelin and Garnett (1969, Transactions of the American Mathematical Society 143, 187–200) on uniform approximation on compact sets K in
$\mathbb C^d$
, the authors introduced a natural function algebra
$A_D(K)$
which is smaller than the classical one
$A(K)$
. In the present paper, we investigate when these two algebras coincide and compare them with the classes of all plausibly approximable functions by polynomials or rational functions or functions holomorphic on open sets containing the compact set K. Finally, we introduce a notion of O-hull of K and strengthen known results.</abstract><cop>Canada</cop><pub>Canadian Mathematical Society</pub><doi>10.4153/S0008439522000613</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5435-3053</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-4395 |
ispartof | Canadian mathematical bulletin, 2023-06, Vol.66 (2), p.643-653 |
issn | 0008-4395 1496-4287 |
language | eng |
recordid | cdi_proquest_journals_2809456157 |
source | Cambridge University Press Journals Complete |
subjects | Algebra Approximation Complex variables Equality Mathematical analysis Polynomials Rational functions |
title | Some remarks on approximation in several complex variables |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T23%3A47%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20remarks%20on%20approximation%20in%20several%20complex%20variables&rft.jtitle=Canadian%20mathematical%20bulletin&rft.au=Falc%C3%B3,%20Javier&rft.date=2023-06-01&rft.volume=66&rft.issue=2&rft.spage=643&rft.epage=653&rft.pages=643-653&rft.issn=0008-4395&rft.eissn=1496-4287&rft_id=info:doi/10.4153/S0008439522000613&rft_dat=%3Cproquest_cross%3E2809456157%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2809456157&rft_id=info:pmid/&rft_cupid=10_4153_S0008439522000613&rfr_iscdi=true |