Multivariate auto‐correlated process control by a residual‐based mixed CUSUM‐EWMA model
Multivariate auto‐correlated process control issues in industrial systems are a concern for statistical process monitoring (SPM). Traditional control charts produce large false alarms and/or miss timely detections of quality deterioration because they are unable to recognize the signals from multiva...
Gespeichert in:
Veröffentlicht in: | Quality and reliability engineering international 2023-06, Vol.39 (4), p.1120-1142 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1142 |
---|---|
container_issue | 4 |
container_start_page | 1120 |
container_title | Quality and reliability engineering international |
container_volume | 39 |
creator | Wang, Kung‐Jeng Asrini, Luh Juni |
description | Multivariate auto‐correlated process control issues in industrial systems are a concern for statistical process monitoring (SPM). Traditional control charts produce large false alarms and/or miss timely detections of quality deterioration because they are unable to recognize the signals from multivariate auto‐correlated response variables. To track multivariate auto‐correlated processes, this paper presents a new residual‐based mixed multivariate control chart using cumulative sum (CUSUM) and exponentially weighted moving average (EWMA) approaches. Using in‐control data, the multi‐output least square support vector regression model's optimal hyper‐parameters are determined, and a bootstrap method is used to estimate the upper control limit of the proposed control chart. The suggested control chart has strong detection performance for a small magnitude mean vector shift based on the average run length (ARL) performance for a particular range of shifts. Experimental result elaborates that the proposed control chart is more sensitive to detecting the mean vector shift compared with the existing commonly used models, such as multivariate CUSUM and multivariate EWMA control charts. The proposed control chart model and corresponding computational algorithm are successfully applied to SPM in an electronic conductor production line with multivariate auto‐correlated attributes. |
doi_str_mv | 10.1002/qre.3278 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2809317853</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2809317853</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2238-120b9e68e5e235d7a7338e99040a78f512e52dda9bb459a803f37ab1cd94d3e93</originalsourceid><addsrcrecordid>eNp10M1KAzEQB_AgCtYq-AgBL1625mO3SY6l1A9oET-KJwnZzSxsSZs22VV78xF8Rp_E1Hr1MgPDj5nhj9A5JQNKCLvaBBhwJuQB6lGiVEaHXB6iHhG5zCSh4hidxLggJGEle-h11rm2eTOhMS1g07X--_Or8iGASwOL18FXECOu_KoN3uFyiw0OEBvbGZdoaWJSy-Yj1fH8aT5Ls8nLbISX3oI7RUe1cRHO_nofza8nz-PbbHp_czceTbOKMS4zykipYCihAMYLK4zgXIJSJCdGyLqgDApmrVFlmRfKSMJrLkxJK6tyy0HxPrrY703vbjqIrV74LqzSSc0kUZwKWfCkLveqCj7GALVeh2ZpwlZTonfh6RSe3oWXaLan742D7b9OPzxOfv0PJfNy5w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2809317853</pqid></control><display><type>article</type><title>Multivariate auto‐correlated process control by a residual‐based mixed CUSUM‐EWMA model</title><source>Wiley-Blackwell Journals</source><creator>Wang, Kung‐Jeng ; Asrini, Luh Juni</creator><creatorcontrib>Wang, Kung‐Jeng ; Asrini, Luh Juni</creatorcontrib><description>Multivariate auto‐correlated process control issues in industrial systems are a concern for statistical process monitoring (SPM). Traditional control charts produce large false alarms and/or miss timely detections of quality deterioration because they are unable to recognize the signals from multivariate auto‐correlated response variables. To track multivariate auto‐correlated processes, this paper presents a new residual‐based mixed multivariate control chart using cumulative sum (CUSUM) and exponentially weighted moving average (EWMA) approaches. Using in‐control data, the multi‐output least square support vector regression model's optimal hyper‐parameters are determined, and a bootstrap method is used to estimate the upper control limit of the proposed control chart. The suggested control chart has strong detection performance for a small magnitude mean vector shift based on the average run length (ARL) performance for a particular range of shifts. Experimental result elaborates that the proposed control chart is more sensitive to detecting the mean vector shift compared with the existing commonly used models, such as multivariate CUSUM and multivariate EWMA control charts. The proposed control chart model and corresponding computational algorithm are successfully applied to SPM in an electronic conductor production line with multivariate auto‐correlated attributes.</description><identifier>ISSN: 0748-8017</identifier><identifier>EISSN: 1099-1638</identifier><identifier>DOI: 10.1002/qre.3278</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; bootstrap method ; control chart ; Control charts ; Control data (computers) ; Control limits ; Correlation ; False alarms ; MCUSUM ; Mean ; MEWMA ; Multivariate analysis ; multivariate auto‐correlated process ; Process controls ; Production lines ; Regression models ; residual‐based control chart ; Statistical analysis ; Statistical methods ; Support vector machines ; support vector regression</subject><ispartof>Quality and reliability engineering international, 2023-06, Vol.39 (4), p.1120-1142</ispartof><rights>2023 John Wiley & Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2238-120b9e68e5e235d7a7338e99040a78f512e52dda9bb459a803f37ab1cd94d3e93</citedby><cites>FETCH-LOGICAL-c2238-120b9e68e5e235d7a7338e99040a78f512e52dda9bb459a803f37ab1cd94d3e93</cites><orcidid>0000-0002-5404-5023</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fqre.3278$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fqre.3278$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27915,27916,45565,45566</link.rule.ids></links><search><creatorcontrib>Wang, Kung‐Jeng</creatorcontrib><creatorcontrib>Asrini, Luh Juni</creatorcontrib><title>Multivariate auto‐correlated process control by a residual‐based mixed CUSUM‐EWMA model</title><title>Quality and reliability engineering international</title><description>Multivariate auto‐correlated process control issues in industrial systems are a concern for statistical process monitoring (SPM). Traditional control charts produce large false alarms and/or miss timely detections of quality deterioration because they are unable to recognize the signals from multivariate auto‐correlated response variables. To track multivariate auto‐correlated processes, this paper presents a new residual‐based mixed multivariate control chart using cumulative sum (CUSUM) and exponentially weighted moving average (EWMA) approaches. Using in‐control data, the multi‐output least square support vector regression model's optimal hyper‐parameters are determined, and a bootstrap method is used to estimate the upper control limit of the proposed control chart. The suggested control chart has strong detection performance for a small magnitude mean vector shift based on the average run length (ARL) performance for a particular range of shifts. Experimental result elaborates that the proposed control chart is more sensitive to detecting the mean vector shift compared with the existing commonly used models, such as multivariate CUSUM and multivariate EWMA control charts. The proposed control chart model and corresponding computational algorithm are successfully applied to SPM in an electronic conductor production line with multivariate auto‐correlated attributes.</description><subject>Algorithms</subject><subject>bootstrap method</subject><subject>control chart</subject><subject>Control charts</subject><subject>Control data (computers)</subject><subject>Control limits</subject><subject>Correlation</subject><subject>False alarms</subject><subject>MCUSUM</subject><subject>Mean</subject><subject>MEWMA</subject><subject>Multivariate analysis</subject><subject>multivariate auto‐correlated process</subject><subject>Process controls</subject><subject>Production lines</subject><subject>Regression models</subject><subject>residual‐based control chart</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Support vector machines</subject><subject>support vector regression</subject><issn>0748-8017</issn><issn>1099-1638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp10M1KAzEQB_AgCtYq-AgBL1625mO3SY6l1A9oET-KJwnZzSxsSZs22VV78xF8Rp_E1Hr1MgPDj5nhj9A5JQNKCLvaBBhwJuQB6lGiVEaHXB6iHhG5zCSh4hidxLggJGEle-h11rm2eTOhMS1g07X--_Or8iGASwOL18FXECOu_KoN3uFyiw0OEBvbGZdoaWJSy-Yj1fH8aT5Ls8nLbISX3oI7RUe1cRHO_nofza8nz-PbbHp_czceTbOKMS4zykipYCihAMYLK4zgXIJSJCdGyLqgDApmrVFlmRfKSMJrLkxJK6tyy0HxPrrY703vbjqIrV74LqzSSc0kUZwKWfCkLveqCj7GALVeh2ZpwlZTonfh6RSe3oWXaLan742D7b9OPzxOfv0PJfNy5w</recordid><startdate>202306</startdate><enddate>202306</enddate><creator>Wang, Kung‐Jeng</creator><creator>Asrini, Luh Juni</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><orcidid>https://orcid.org/0000-0002-5404-5023</orcidid></search><sort><creationdate>202306</creationdate><title>Multivariate auto‐correlated process control by a residual‐based mixed CUSUM‐EWMA model</title><author>Wang, Kung‐Jeng ; Asrini, Luh Juni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2238-120b9e68e5e235d7a7338e99040a78f512e52dda9bb459a803f37ab1cd94d3e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>bootstrap method</topic><topic>control chart</topic><topic>Control charts</topic><topic>Control data (computers)</topic><topic>Control limits</topic><topic>Correlation</topic><topic>False alarms</topic><topic>MCUSUM</topic><topic>Mean</topic><topic>MEWMA</topic><topic>Multivariate analysis</topic><topic>multivariate auto‐correlated process</topic><topic>Process controls</topic><topic>Production lines</topic><topic>Regression models</topic><topic>residual‐based control chart</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Support vector machines</topic><topic>support vector regression</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Kung‐Jeng</creatorcontrib><creatorcontrib>Asrini, Luh Juni</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>Quality and reliability engineering international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Kung‐Jeng</au><au>Asrini, Luh Juni</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multivariate auto‐correlated process control by a residual‐based mixed CUSUM‐EWMA model</atitle><jtitle>Quality and reliability engineering international</jtitle><date>2023-06</date><risdate>2023</risdate><volume>39</volume><issue>4</issue><spage>1120</spage><epage>1142</epage><pages>1120-1142</pages><issn>0748-8017</issn><eissn>1099-1638</eissn><abstract>Multivariate auto‐correlated process control issues in industrial systems are a concern for statistical process monitoring (SPM). Traditional control charts produce large false alarms and/or miss timely detections of quality deterioration because they are unable to recognize the signals from multivariate auto‐correlated response variables. To track multivariate auto‐correlated processes, this paper presents a new residual‐based mixed multivariate control chart using cumulative sum (CUSUM) and exponentially weighted moving average (EWMA) approaches. Using in‐control data, the multi‐output least square support vector regression model's optimal hyper‐parameters are determined, and a bootstrap method is used to estimate the upper control limit of the proposed control chart. The suggested control chart has strong detection performance for a small magnitude mean vector shift based on the average run length (ARL) performance for a particular range of shifts. Experimental result elaborates that the proposed control chart is more sensitive to detecting the mean vector shift compared with the existing commonly used models, such as multivariate CUSUM and multivariate EWMA control charts. The proposed control chart model and corresponding computational algorithm are successfully applied to SPM in an electronic conductor production line with multivariate auto‐correlated attributes.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/qre.3278</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-5404-5023</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0748-8017 |
ispartof | Quality and reliability engineering international, 2023-06, Vol.39 (4), p.1120-1142 |
issn | 0748-8017 1099-1638 |
language | eng |
recordid | cdi_proquest_journals_2809317853 |
source | Wiley-Blackwell Journals |
subjects | Algorithms bootstrap method control chart Control charts Control data (computers) Control limits Correlation False alarms MCUSUM Mean MEWMA Multivariate analysis multivariate auto‐correlated process Process controls Production lines Regression models residual‐based control chart Statistical analysis Statistical methods Support vector machines support vector regression |
title | Multivariate auto‐correlated process control by a residual‐based mixed CUSUM‐EWMA model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T23%3A08%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multivariate%20auto%E2%80%90correlated%20process%20control%20by%20a%20residual%E2%80%90based%20mixed%20CUSUM%E2%80%90EWMA%20model&rft.jtitle=Quality%20and%20reliability%20engineering%20international&rft.au=Wang,%20Kung%E2%80%90Jeng&rft.date=2023-06&rft.volume=39&rft.issue=4&rft.spage=1120&rft.epage=1142&rft.pages=1120-1142&rft.issn=0748-8017&rft.eissn=1099-1638&rft_id=info:doi/10.1002/qre.3278&rft_dat=%3Cproquest_cross%3E2809317853%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2809317853&rft_id=info:pmid/&rfr_iscdi=true |