Enforcing generalized conditional symmetry in physics-informed neural network for solving the KdV-like equation with Robin initial/boundary conditions
In this work, we extend the generalized conditional symmetry enhanced physics-informed neural network (gsPINN) to study the partial differential equations (PDEs) with Robin initial/boundary conditions. The gsPINN incorporates the inherent physical laws, i.e., generalized conditional symmetry of PDEs...
Gespeichert in:
Veröffentlicht in: | Nonlinear dynamics 2023-06, Vol.111 (11), p.10381-10392 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10392 |
---|---|
container_issue | 11 |
container_start_page | 10381 |
container_title | Nonlinear dynamics |
container_volume | 111 |
creator | Zhang, Hui Cai, Sheng-Jie Li, Jie-Ying Liu, Ye Zhang, Zhi-Yong |
description | In this work, we extend the generalized conditional symmetry enhanced physics-informed neural network (gsPINN) to study the partial differential equations (PDEs) with Robin initial/boundary conditions. The gsPINN incorporates the inherent physical laws, i.e., generalized conditional symmetry of PDEs, into the loss function of PINN and thus learns higher accuracy numerical solutions than PINN with fewer training points and simpler architecture of network. More specifically, we compare the performances of PINN and gsPINN to solve the KdV-like PDEs and show that gsPINN outperforms PINN in terms of the accuracy of learned solutions. Moreover, for the problem of PDEs together with what form of initial/boundary conditions are admitted by the known generalized conditional symmetry, we use the gsPINN method to learn the undetermined functions in Robin initial/boundary conditions and demonstrate the superiorities and robustness of gsPINN over PINN. Our results provide an alternative way for utilizing the deep neural network to study the problems of generalized conditional symmetry of PDEs. |
doi_str_mv | 10.1007/s11071-023-08361-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2809316701</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2809316701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-536764e2fb4e7212cf6c96f0036dee9c6c4f264e222da184cd058d0df4114f6a3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWB9_wFXAdfQmmWZmliK-UBBEpbswzaNNnSY1mVHqD_H3mrGiO1cXLuc7596D0BGFEwpQniZKoaQEGCdQcUGJ2EIjOi45YaKebKMR1KwgUMNkF-2ltAAAzqAaoc8Lb0NUzs_wzHgTm9Z9GI1V8Np1LvimxWm9XJourrHzeDVfJ6cScQO1zEJv-szk0b2H-ILzFqfQvg1-3dzgW_1MWvdisHntm8EPv7tujh_CNJs5nyOa9nQaeq-bHPCbmg7Qjm3aZA5_5j56urx4PL8md_dXN-dnd0RxWndkzEUpCsPstDAlo0xZoWph83NCG1MroQrLBgFjuqFVoTSMKw3aFpQWVjR8Hx1vfFcxvPYmdXIR-pi_TpJVUHMqSqBZxTYqFUNK0Vi5im6ZL5YU5NC_3PQvc__yu38pMsQ3UMpiPzPxz_of6gsSAIzC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2809316701</pqid></control><display><type>article</type><title>Enforcing generalized conditional symmetry in physics-informed neural network for solving the KdV-like equation with Robin initial/boundary conditions</title><source>SpringerNature Complete Journals</source><creator>Zhang, Hui ; Cai, Sheng-Jie ; Li, Jie-Ying ; Liu, Ye ; Zhang, Zhi-Yong</creator><creatorcontrib>Zhang, Hui ; Cai, Sheng-Jie ; Li, Jie-Ying ; Liu, Ye ; Zhang, Zhi-Yong</creatorcontrib><description>In this work, we extend the generalized conditional symmetry enhanced physics-informed neural network (gsPINN) to study the partial differential equations (PDEs) with Robin initial/boundary conditions. The gsPINN incorporates the inherent physical laws, i.e., generalized conditional symmetry of PDEs, into the loss function of PINN and thus learns higher accuracy numerical solutions than PINN with fewer training points and simpler architecture of network. More specifically, we compare the performances of PINN and gsPINN to solve the KdV-like PDEs and show that gsPINN outperforms PINN in terms of the accuracy of learned solutions. Moreover, for the problem of PDEs together with what form of initial/boundary conditions are admitted by the known generalized conditional symmetry, we use the gsPINN method to learn the undetermined functions in Robin initial/boundary conditions and demonstrate the superiorities and robustness of gsPINN over PINN. Our results provide an alternative way for utilizing the deep neural network to study the problems of generalized conditional symmetry of PDEs.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-023-08361-6</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Artificial neural networks ; Automotive Engineering ; Boundary conditions ; Classical Mechanics ; Control ; Dynamical Systems ; Engineering ; Mechanical Engineering ; Neural networks ; Original Paper ; Partial differential equations ; Robustness (mathematics) ; Symmetry ; Vibration</subject><ispartof>Nonlinear dynamics, 2023-06, Vol.111 (11), p.10381-10392</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-536764e2fb4e7212cf6c96f0036dee9c6c4f264e222da184cd058d0df4114f6a3</citedby><cites>FETCH-LOGICAL-c319t-536764e2fb4e7212cf6c96f0036dee9c6c4f264e222da184cd058d0df4114f6a3</cites><orcidid>0000-0003-4416-4798</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-023-08361-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-023-08361-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Zhang, Hui</creatorcontrib><creatorcontrib>Cai, Sheng-Jie</creatorcontrib><creatorcontrib>Li, Jie-Ying</creatorcontrib><creatorcontrib>Liu, Ye</creatorcontrib><creatorcontrib>Zhang, Zhi-Yong</creatorcontrib><title>Enforcing generalized conditional symmetry in physics-informed neural network for solving the KdV-like equation with Robin initial/boundary conditions</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>In this work, we extend the generalized conditional symmetry enhanced physics-informed neural network (gsPINN) to study the partial differential equations (PDEs) with Robin initial/boundary conditions. The gsPINN incorporates the inherent physical laws, i.e., generalized conditional symmetry of PDEs, into the loss function of PINN and thus learns higher accuracy numerical solutions than PINN with fewer training points and simpler architecture of network. More specifically, we compare the performances of PINN and gsPINN to solve the KdV-like PDEs and show that gsPINN outperforms PINN in terms of the accuracy of learned solutions. Moreover, for the problem of PDEs together with what form of initial/boundary conditions are admitted by the known generalized conditional symmetry, we use the gsPINN method to learn the undetermined functions in Robin initial/boundary conditions and demonstrate the superiorities and robustness of gsPINN over PINN. Our results provide an alternative way for utilizing the deep neural network to study the problems of generalized conditional symmetry of PDEs.</description><subject>Artificial neural networks</subject><subject>Automotive Engineering</subject><subject>Boundary conditions</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Mechanical Engineering</subject><subject>Neural networks</subject><subject>Original Paper</subject><subject>Partial differential equations</subject><subject>Robustness (mathematics)</subject><subject>Symmetry</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kEtLAzEUhYMoWB9_wFXAdfQmmWZmliK-UBBEpbswzaNNnSY1mVHqD_H3mrGiO1cXLuc7596D0BGFEwpQniZKoaQEGCdQcUGJ2EIjOi45YaKebKMR1KwgUMNkF-2ltAAAzqAaoc8Lb0NUzs_wzHgTm9Z9GI1V8Np1LvimxWm9XJourrHzeDVfJ6cScQO1zEJv-szk0b2H-ILzFqfQvg1-3dzgW_1MWvdisHntm8EPv7tujh_CNJs5nyOa9nQaeq-bHPCbmg7Qjm3aZA5_5j56urx4PL8md_dXN-dnd0RxWndkzEUpCsPstDAlo0xZoWph83NCG1MroQrLBgFjuqFVoTSMKw3aFpQWVjR8Hx1vfFcxvPYmdXIR-pi_TpJVUHMqSqBZxTYqFUNK0Vi5im6ZL5YU5NC_3PQvc__yu38pMsQ3UMpiPzPxz_of6gsSAIzC</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Zhang, Hui</creator><creator>Cai, Sheng-Jie</creator><creator>Li, Jie-Ying</creator><creator>Liu, Ye</creator><creator>Zhang, Zhi-Yong</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-4416-4798</orcidid></search><sort><creationdate>20230601</creationdate><title>Enforcing generalized conditional symmetry in physics-informed neural network for solving the KdV-like equation with Robin initial/boundary conditions</title><author>Zhang, Hui ; Cai, Sheng-Jie ; Li, Jie-Ying ; Liu, Ye ; Zhang, Zhi-Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-536764e2fb4e7212cf6c96f0036dee9c6c4f264e222da184cd058d0df4114f6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>Automotive Engineering</topic><topic>Boundary conditions</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Mechanical Engineering</topic><topic>Neural networks</topic><topic>Original Paper</topic><topic>Partial differential equations</topic><topic>Robustness (mathematics)</topic><topic>Symmetry</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Hui</creatorcontrib><creatorcontrib>Cai, Sheng-Jie</creatorcontrib><creatorcontrib>Li, Jie-Ying</creatorcontrib><creatorcontrib>Liu, Ye</creatorcontrib><creatorcontrib>Zhang, Zhi-Yong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Hui</au><au>Cai, Sheng-Jie</au><au>Li, Jie-Ying</au><au>Liu, Ye</au><au>Zhang, Zhi-Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enforcing generalized conditional symmetry in physics-informed neural network for solving the KdV-like equation with Robin initial/boundary conditions</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>111</volume><issue>11</issue><spage>10381</spage><epage>10392</epage><pages>10381-10392</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>In this work, we extend the generalized conditional symmetry enhanced physics-informed neural network (gsPINN) to study the partial differential equations (PDEs) with Robin initial/boundary conditions. The gsPINN incorporates the inherent physical laws, i.e., generalized conditional symmetry of PDEs, into the loss function of PINN and thus learns higher accuracy numerical solutions than PINN with fewer training points and simpler architecture of network. More specifically, we compare the performances of PINN and gsPINN to solve the KdV-like PDEs and show that gsPINN outperforms PINN in terms of the accuracy of learned solutions. Moreover, for the problem of PDEs together with what form of initial/boundary conditions are admitted by the known generalized conditional symmetry, we use the gsPINN method to learn the undetermined functions in Robin initial/boundary conditions and demonstrate the superiorities and robustness of gsPINN over PINN. Our results provide an alternative way for utilizing the deep neural network to study the problems of generalized conditional symmetry of PDEs.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-023-08361-6</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4416-4798</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-090X |
ispartof | Nonlinear dynamics, 2023-06, Vol.111 (11), p.10381-10392 |
issn | 0924-090X 1573-269X |
language | eng |
recordid | cdi_proquest_journals_2809316701 |
source | SpringerNature Complete Journals |
subjects | Artificial neural networks Automotive Engineering Boundary conditions Classical Mechanics Control Dynamical Systems Engineering Mechanical Engineering Neural networks Original Paper Partial differential equations Robustness (mathematics) Symmetry Vibration |
title | Enforcing generalized conditional symmetry in physics-informed neural network for solving the KdV-like equation with Robin initial/boundary conditions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T13%3A35%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enforcing%20generalized%20conditional%20symmetry%20in%20physics-informed%20neural%20network%20for%20solving%20the%20KdV-like%20equation%20with%20Robin%20initial/boundary%20conditions&rft.jtitle=Nonlinear%20dynamics&rft.au=Zhang,%20Hui&rft.date=2023-06-01&rft.volume=111&rft.issue=11&rft.spage=10381&rft.epage=10392&rft.pages=10381-10392&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-023-08361-6&rft_dat=%3Cproquest_cross%3E2809316701%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2809316701&rft_id=info:pmid/&rfr_iscdi=true |